
JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

Comparative Analysis of Sorting Algorithms: TimSort
Python and Classical Sorting Methods

Firmansyah Rekso Wibowo1, Muhammad Faisal2
1,2 Program Studi MagisterInformatika, Fakultas Sains dan Teknologi, Universitas Negeri Islam Maulana Malik Ibrahim

Email: 1firmansyahrwibowo@gmail.com, 2mfaisal@ti.uin-malang.ac.id

Abstract − The sorted() function within the Python programming language has emerged as the primary choice among
developers for sorting operations. Consequently, this study offers a comparative analysis of various classical sorting
algorithms and Python's built-in sorting mechanisms, with the objective of identifying the most time-efficient sorting
algorithm. The analysis involves assessing the time complexity of each algorithm while handling data arrays ranging from
10 to 1,000,000 elements using Python. These arrays are populated with randomly generated numeric values falling within
the range of 1 to 1000. The benchmark algorithms utilized encompass Heap Sort, Shell Sort, Quick Sort, and Merge Sort.
A looping mechanism is applied to each algorithm, and their execution speeds are gauged utilizing the Python
'time.perf_counter()' library. The findings of this study collectively indicate that Python's standard algorithm, surpasses
classic sorting algorithms, including Heapsort, Shellsort, Quicksort, and Mergesort, in terms of execution.

Keywords – Quicksort, Mergesort, Timsort, Heapsort, Shellsort

I. INTRODUCTION
The development of science and technology allows

humans to create increasingly developed and complex
works, even though computers can perform calculations
faster than humans in general, computers cannot simply
solve problems on their own without teaching humans
through sequences or steps. The steps mentioned here can
be called an algorithm. There are many definitions of what
an algorithm actually is. According to Sismoro (2005), an
algorithm is a set of instructions or steps written
systematically and used to solve logical and mathematical
problems/issues with the help of a computer [1]. According
to Kani (2020), an algorithm is an effort with a series of
operations arranged logistically and systematically to solve
a problem to produce a certain output [2]. Informally, an
algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces
some value, or set of values, as output [3]. Some of the
understanding obtained by researchers shows that an
algorithm is a systematic process for solving a problem, and
a sorting algorithm is an example that can show that a
problem can be solved with a systematic process.

A sorting algorithm in general is a process for
rearranging a collection of objects or data using certain
rules. In programming, sorting data is important because
the time required for the sorting process must be taken into
account. Sequencing is also used in compiling computer
programs and has an important role in increasing the
efficiency of processing data that needs to be repeated. The
type and amount of data that needs to be sorted varies
greatly. Additionally, determining the right algorithm for a
particular situation can be a difficult task because there are
various factors that influence its effectiveness. There are
several methods that can be used to carry out the sorting
process, including Quick Sort, Merge Sort, Bubble Sort,
Insertion Sort, and many more. Sorting algorithms have
their respective advantages and disadvantages which
depend on the amount of data. Efficiency in an algorithm is
very important, according to Anggraini Kusumaningrum
(2010) a good algorithm is an efficient algorithm where the

algorithm is said to be good because it is assessed from the
aspect of short time requirements [4].

Time complexity is a measure of the computational
effort required for an algorithm to complete its task,
expressed as a function of the size of its input. It quantifies
how the algorithm's execution time adapts to the size of the
input data and characterizes the efficiency of the algorithm
by analyzing the number of basic operations it performs.
Along with current technological developments, sorting
algorithms have also been applied to programming
languages, in this case Python. Sorting in the Python
programming language uses the sort() function or what is
called Timsort. Timsort is a Merge Sort (hybrid) algorithm
derived from Merge Sort and insertion sort, which is
designed to handle sorting on many types of data so that it
can work well (Tim Peters, 2002) [5]. Timsort was created
by Tim Peters in 2002 for use in the Python programming
language. The algorithm finds sub-sequences of data that
are already running and uses them to sort the rest more
efficiently. According to Auger Nicolas et al, this is done
by combining processes until certain criteria are met.
Timsort has been Python's standard sorting algorithm since
version 2.3.

Time complexity is a measure of the computational
effort an algorithm requires to complete its task, expressed
as a function of the size of its input. It quantifies how the
algorithm's execution time scales with the size of the input
data and characterizes the efficiency of the algorithm by
analyzing the number of basic operations it performs.
Along with current technological developments, sorting
algorithms have also been implemented in programming
languages, in this case, Python. Sorting in the Python
programming language uses the sorted() function or
another is called Timsort. Timsort is a combined (hybrid)
sorting algorithm derived from Merge Sort and insertion
sort, which is designed for handling sorting on many types
of data that works well (Tim Peters, 2002) [5]. Timsort was
created by Tim Peters in 2002 for use in the Python
programming language. The algorithm finds sub-sequences
of the data already running and uses them to sort the rest
more efficiently. According to Auger Nicolas et al, this is

11

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

Fig 1. Flow of sorting algorithm comparison methods

done by combining runs until certain criteria are met.
Timsort has been Python's standard sorting algorithm since
version 2.3.

In several studies obtained from several references, like
comes from Yolanda Rumapea (2017) found that the Quick
Sort and Merge Sort algorithms each have advantages and
disadvantages in computing time and number of steps [7].
Many factors influence this, one of which is a big factor.
the size of the data input, the type of data input, and
determining the pivot value (specifically in the Quick Sort
algorithm).

Other studies from Oladipupo Esau Taiwo et al (2020)
state that quick-sort is indeed faster, although merge-sort is
stated to be better for organizing larger amounts of
data/arrays [8]. In the same study, the author also stated that
in terms of stability, Quick Sort is also more stable than
merge-sort, also the performance of Merge Sort is indeed
good, but the need to allocate memory used for sorting
makes it less preferable when compared to the Quick Sort
algorithm for application use where good cache locality
allocation is the main thing.

In a study from S. Mansoor Sarwar et al (1993)
comparing quick-sort, shell-sort and merge-sort, this study
showed that shell-sort behaved better than merge-sort by
1000 < N < 150,000 [9]. However, Merge Sort
outperformsShell Sort for N > 150,000, then apart from
these 2 algorithms, Quick Sort turns out to be better than
Shell Sort and Merge Sort for all values of N > 1000.

Several studies tried to enhance sorting algorithms in
order to efficiency. Like a study by Abu Sara et al (2020)
[10], Enhanced Merge-Sort (EMS) has been carried out,
experimental results show that EMS provides better sorting
efficiency in terms of running speed than classic merge-
sort. Another comparative study comes from Khalid
Alkharabsheh discusses a comparison between the new
suggested sorting algorithm (GCS) and selection sort,
Insertion sort, merge sort, and quick sort. and bubble sort.
It analyzes the performance of these algorithms for the
same number of elements (10000, 20000, 30000) [11]. For
small input, the performance for the six techniques is all
nearest, but for the large input Quick sort is the fastest and
the selection sort the slowest.

Opeyemi Adesina (2013) evaluated the performance of
median, heap, and quick-sort techniques using CPU time
and memory space as performance indexes [12]. The results
obtained show that in the majority of the cases considered,
the heap sort technique is faster and requires less space than
median and quick sort algorithms in sorting data of any
input data size.

Apart from that, there is research from Muhammad Ezar
Al Rivan (2017) which tries to connect several classical
sorting algorithms. The combination of the Quick-Insertion
Sort algorithm has better performance compared to Quick
Sort itself and Merge-Insertion Sort has better performance
compared to classic merge sort and classic quick sort itself
[13], Quick-Insertion Sort is 15% faster compared to Quick
Sort with a limit of 16. Merge-Insertion Sort is 34.8% faster
than Merge Sort with a limit of 16. After comparing several
sorting algorithms from various studies above, we chose
heap, shell, merge, and quick sort as a comparison method
Python's built-in sorting

The aim of this research is to present a comparative
study of several classical sorting algorithms and Python's
built-in sorting methods with the aim of showing the time
complexity of the most efficient sorting algorithms. In this
case the researcher tries to prove the sorting process
because each programming language creates a different
sorting function. Functions such as Python build in sorted(),
namely Timsort, are considered more frequently used,
because classical sorting algorithms are rarely used to
implement sorting.

II. RESEARCH METHODOLOGY

In this study, we aim to compare the efficiency of

classical sorting algorithms with Python's built-in
algorithm, known as timsort. The process flow carried out
for this research is illustrated in Figure 1. The initial step
involves determining the data size (denoted by 'n') to assess
the real-time speed of each algorithm. To achieve this,
researchers used loop functions to determine the desired
data size for the execution of each algorithm examined. The
data size used is randomly generated by the Python library,
generating random numbers ranging from 1 to 1000. Next,
these randomly generated numbers are sorted based on each
selected algorithm.

Since each sorting algorithm is encapsulated in a
function, the process of measuring its execution speed
becomes easier. To perform these time calculations, the
Python library 'time.perf_counter' will be used. Start the
timing process by recording the start time before the sorting
operation and conclude it by recording the end time. The
difference between the final and initial values is calculated,
providing the execution time for each algorithm. Next, we
will describe the various algorithms used for benchmarking
and comparative analysis in this research.

A. Heap Sort

Heap sort is a sorting technique that utilizes a binary
tree structure to arrange elements in an array. This approach
involves transforming the array into a binary tree, where the
values contained in the individual array indices are then
sorted. In the following section, we present a brief
explanation of the heap sort method accompanied by a
representative example, as illustrated in Figure 2. It is
important to emphasize the heap construction of the
provided array and its subsequent transformation into a
maximal heap, as depicted in Figure 3. After this
conversion process, the elements making up the array reach
the configuration shown in Figure 4.

12

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

Fig 2. Unordered data initialization

Fig 3. Study comparison of sorting algorithms

Fig. 4. Sorting max heap result

After swapping the array element 89 with 11, and
converting the heap into max-heap, the elements of the
array are Figure 6. The process is looping until the data is
sorted properly.

Figure. 5. Next step of erasing highest heap

Fig 6. Heap sort loop and result

In heap sort there are 3 parts, namely Node, Edge, and Leaf
where the node is each index in the array, the edge is the
line that connects each node and the leaf is each node that
does not have a child node (child node). Apart from that,
there is also something called root, which is the initial node
in a heap. Max heapify has complexity O(logN), build
Maxheap has complexity O(N) and we run Max heapify
N−1 times in heap_sort function, therefore the complexity
of heap_sort function is O(NlogN)

B. Shell Sort
This sorting technique, commonly referred to as the

"diminishing increment method," is frequently denoted as
the "Shell Sort Method." Its inception can be attributed to
Donald L. Shell in 1959 [17], hence the nomenclature. This
method orchestrates the sorting of data by scrutinizing each
data element in relation to other elements situated at
specific intervals, effecting exchanges where deemed
necessary. The sorting process using the Shell method can
be explained as follows:

Fig 7. Initial sublist of Shell Sort

We can observe this in Figure. 7, where there are nine items
in the list. By employing an increment of three, the list is
divided into three sublists, each of which can be
individually sorted using insertion sort.

Fig 8. After sorting sublist

Once these individual sorts are finished, you'll notice the
resulting list in Figure. 8. While it may not be entirely
sorted, an intriguing transformation has occurred. Sorting
the sublists has brought the items closer to their respective
correct positions within the list.

Fig 9. ShellSort: A Final Insertion Sort with Increment of 1

In Figure. 9, you can observe the last step of the insertion
sort, which uses an increment of one, essentially
representing a traditional insertion sort. It's worth noting
that the previous sorting of sublists has effectively
minimized the total number of required shifting operations
to arrange the list in its correct order. In this particular
instance, only four additional shifts are needed to finalize
the sorting process.

C. Merge Sort

The Merge Sort algorithm uses the divide and conquer
concept. The Merge Sort algorithm is an algorithm that
performs sorting by dividing data into small parts. Then
these small parts are divided into small sub-parts until one
element is obtained. Sorting is done simultaneously with
merging. One element is combined with another element by

13

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

directly sorting it. This combination of elements is then
combined again with other combinations of elements. The
time complexity of the Average Case and Worst Case is [5].

Fig 10. Merge Sort algorithm workflow

Briefly, Merge Sort can be explained as follows (Figure
10). Initially, the array will be divided into two almost
equal parts. This is done by finding the midpoint of the
array. This process repeats recursively until each subarray
has only one element. This is the basic step (base case).
Next, the two sorted subarrays are merged into one sorted
subarray. When performing a merge, it compares the
elements of the two subarrays and places them in the correct
order. Next, the division and merge steps are repeated for
each subarray until the entire array is sorted. The base case
of recursion is when the subarray contains only one element
or is empty. When that happens, the subarray is considered
sorted and no longer needs to be sorted.

D. Quick Sort

Quick Sort method is also often called the Partition
Exchange Sort method. This method was introduced by
C.A.R. Hoare. To increase its effectiveness, in this method
the distance between the two elements whose value will be
exchanged is determined to be quite far. The Quick Sort
sorting method can be implemented in non-recursive and
recursive forms [7].

Fig 11. Quick Sort algorithm process flow

The sorting process is carried out by breaking the data set
into two parts based on the selected pivot value. In
principle, the selected pivot value will be placed in position
at the end of each partition process. After the partition
process is complete and the pivot is placed in the right
position, the sorting process continues recursively to sort
the data on the left pivot side and the right pivot side. In

general, the Quick Sort sorting process can be explained in
the following image, Figure 11.

E. Python Built-in Sort (Timsort)

Timsort is designed to take advantage of running
sequential elements that already exist in most real-world
data. This repeats the data collection elements into the
process and simultaneously places the process in the stack.
Whenever runs in the stack match the Merge Sort criteria,
they will be merged. This goes on until all data has been
passed, then all processes are merged two at a time and only
one sorted process remains. The advantage of merging run
sequences over merging fixed-sized sub-lists (as classical
Merge Sort does) is that it reduces the total number of
comparisons required to sort the entire list [19]. Each
process has a minimum size, which is based on the input
size and is determined at the beginning of the algorithm. If
the process is smaller than this minimum process size, the
insert type is used to add more elements to the process until
the minimum process size is reached.

Timsort is a stable sorting algorithm (the order of
elements with the same key is maintained) and attempts to
perform a balanced merge (the merge combines its size) [5].

Fig 12. Magnetization as a function of applied

If | Z | | Y | + | X |, then X and Y are combined and replaced
on the stack. In this way, the merge continues until all runs
satisfy it. | Z | > | Y | + | X | and ii. | Y | > | X | [16].

Fig 13. Python Built-in Flow

To merge, Timsort copies the elements of the smaller array
(X in this illustration) to temporary memory, then sorts and
fills the elements in final order into the combined space of
X and Y Figure 13. Elements (indicated by blue arrows) are
compared and smaller elements are moved to their final
positions (indicated by red arrows) Fig. 14. All red
elements are smaller than blue (here, 21). Thus, they can be
moved in chunks to the final array of Figure 15.

14

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

Fig 14. Element and final position

Fig 15. Element configuration

The Timsort algorithm looks for a sequence of minimum
size, min runs, to perform the sorting. Because merging is
most efficient when the number of runs is equal to, or
slightly less than, a power of two, and notably less efficient
when the number of runs is slightly more than a power of
two, Timsort chooses minrun to try to ensure the former
condition.

Fig 16. Timsort algorithm searches for minimum-size

III. RESULTS AND DISCUSSION

The average time complexity of the classic sorting
algorithm heap, shell, merge, quick sort is O(n log(n)),
which is the same as Python built-in (Timsort)t.
Additionally, the best and worst case time complexity of
merge sort is also O(n log(n)), which is the also same as
quicksort and heap sort. As a result, the classical merge sort
is generally unaffected by factors in the initial array.

However, classical merge sort uses O(n) space, since
additional memory is required when merging. Quicksort
also has this space complexity, while heap sort takes O(1)

space since it is an in-place method with no other memory
requirements.
A summary overall of the complexity time is shown in
Table 1. The results of the comparison method produced
first are data comparisons (n), namely 10 to 100 unsorted
data. The comparison results are shown in Table 2.

Table 2. Time elapsed for each algorithm (10 - 100)

Heap Shell Merge Quick Timsort Data
(ms) (ms) (ms) (ms) (ms) Amount

0.04 0.01 0.02 0.02 0.01 10

0.03 0.02 0.04 0.03 0.01 20

0.04 0.03 0.05 0.05 0.02 30

0.06 0.04 0.06 0.06 0.02 40

0.08 0.06 0.07 0.08 0.02 50

0.16 0.05 0.08 0.09 0.03 60

0.11 0.07 0.1 0.12 0.04 70

0.13 0.08 0.12 0.13 0.04 80

0.14 0.09 0.14 0.15 0.05 90

0.18 0.11 0.17 0.2 0.05 100

.

Figure 16. Time Complexity (10-100)

As the result from 10-100 sorting data Fig. 16, we
found Quick sort and Python Sort appear to be the fastest
sorting algorithms across all data sizes, consistently taking
the least amount of time.

Table 3. Time elapsed for each algorithm (100 - 1.000).

Heap Shell Merge Quick Timsort Data
(ms) (ms) (ms) (ms) (ms) Amount

0.18 0.11 0.17 0.2 0.05 100

0.48 0.23 0.33 0.33 0.1 200

0.66 0.38 0.49 0.49 0.15 300

0.81 0.6 0.68 0.75 0.22 400

1.07 1.01 0.94 0.93 0.32 500

1.65 0.97 1.49 1.01 0.31 600

1.55 1.12 1.26 1.38 0.38 700

1.85 1.5 1.75 1.58 0.41 800

2.09 1.73 1.64 1.49 0.46 900

2.41 1.84 1.89 1.71 0.51 1000

15

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

Heap Sort, Shell Sort, and Merge Sort tend to take more
time as the data size grows, and their execution times are
relatively close to each other. The Python Sort (built-in)
consistently outperforms the custom sorting algorithms in
terms of speed (Table 2).

Fig 18. Time Complexity (1,000-10,000) Table 5.

Time elapsed for each algorithm (10.000 - 100.000).

Heap
(ms)

Shell
(ms)

Merg
e

Quic
k

Python
built-in

Data
Amoun

Fig 17. Time Complexity (100-1,000)

As we can see (Table 3), Quick Sort and Python Sort
are consistently faster across all data sizes. Quick Sort, in

 (ms) (ms) (ms) t

32.02 27.53 22.47 13.34 5.25 10000

71.64 68.98 52.12 29.7 12.4 20000

123.65 104.99 79.05 39.74 17.68 30000

particular, maintains its efficiency even as the data size 159.55 146.2 109.02 53.99 22.99 40000

grows. Heap Sort, Shell Sort, and Merge Sort exhibit longer 203.19 190.69 145.88 67.79 28.91 50000

execution times as the data size increases, with Heap Sort
245.93

244.8

168.6

93.34

35.06

60000

being the slowest among the custom sorting algorithms Fig.
17.

Table 4. Time elapsed for each algorithm (1.000 - 10.000).

Heap Shell Merge Quic Python Data 435.74 494.3 371.57 197.26 57.13 100000
(ms) (ms) (ms) k built-in Amoun

 (ms) (ms) t

2.41 1.84 1.89 1.71 0.51 1000

6.02 4.34 3.86 3.12 1.01 2000

8.51 6.53 6.13 4.3 1.54 3000

11.72 8.94 8.38 5.69 2 4000

14.8 12.79 10.91 7.09 2.55 5000

18.11 14.33 13.21 9.13 3.19 6000

21.9 16.94 15.38 9.35 3.7 7000

25.36 21.11 17.81 10.75 4.28 8000

29.41 24.11 20.24 11.58 5.15 9000

32.02 27.53 22.47 13.34 5.25 10000

Heap Sort and Shell Sort show the highest percentage

increases in execution time, indicating that they become
significantly slower as the data size grows (Table 4 & Fig.
18).

Quick Sort exhibits a lower percentage increase
compared to the custom sorting algorithms, making it more
efficient for larger data sets. Python Sort remains a robust
choice, with its execution time increasing by less than
1000% over the data size range, suggesting its consistent

Fig 19. Time Complexity (10,000-100,000)

As data size reaches 100,000 elements, the execution
times vary significantly between sorting algorithms, with
Quick Sort and Python Sort maintaining their efficiency,
while the other algorithms experience more substantial
increases in execution time. Heap Sort, Shell Sort, and
Merge Sort become increasingly slower as the data size
grows. Heap Sort is notably slower for larger datasets.

Table 6. Time elapsed for each algorithm (100.000 - 1.000.000).

efficiency. Heap
(ms)

Shell
(ms)

Merge
(ms)

Quick
(ms)

Timsort
(ms)

Data
Amou

 nt
419.13 494.3 371.57 197.26 55.16 100000

919.21 1399.76 593.99 284.13 125.2 200000

1477.77 1580.54 918.64 441.91 170.65 300000

2165.92 2286.17 1298.11 810.55 684.66 400000

307.37 296.3 196 90.99 40.58 70000

356.79 329.69 235.7 108.01 46.77 80000

408.63 404.4 314.56 132.6 51.35 90000

16

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

2875.81 3181.02 1621.98 813.99 289.56 500000

3176.95 3522.2 1982.79 1023.11 355.8 600000

3917.22 4109.59 2332.34 1266.21 408.73 700000

4420.99 5341.38 2689.28 1477.53 469.31 800000

5263.96 5474.57 3061.3 1680.99 541.9 900000

5700.81 6999 3450.7 2011.64 596.34 1000000

Fig 20. Time Complexity (10,000-1,000,000)

Same as described above, for the largest dataset with
1,000,000 elements (Table 6), the differences in execution
times among the sorting algorithms are pronounced, with
Quick Sort and Python Sort being significantly more
efficient than the others (Fig. 20).

Fig 21. Overal Time Complexity (10-1,000,000

Python Sort (Python's built-in sorting function) is the

second most efficient sorting algorithm (Fig. 21), closely
following Quick Sort. Heap Sort, Shell Sort, and Merge
Sort tend to become slower as data size increases, with
Heap Sort being the slowest among these three custom
sorting algorithms. For the largest dataset with 1,000,000
elements, the differences in execution times among the
sorting algorithms are pronounced, with Quick Sort and
Python Sort being significantly more efficient than the
others. As data size reaches 1,000,000 elements, the
execution times vary widely among the sorting algorithms,
reflecting the importance of choosing the right sorting
algorithm for specific use cases.

For data sizes of 100,000 or more, the differences in
execution times among sorting algorithms become even
more pronounced, with Python Sort consistently
demonstrating its efficiency. Heap Sort exhibits the longest

execution times for large datasets, making it less practical
for very large datasets

IV. CONCLUSION

The dataset consists of execution times (in
milliseconds) for various sorting algorithms on different
data sizes ('data_count'). This research includes five
classical sorting algorithms: Heap Sort, Shell Sort, Merge
Sort, and Quick Sort compared with Python Built-in Sort
(Timsort), with data sizes ranging from 10 to 1,000,000
elements. As the data size increases, the execution time for
all sorting algorithms generally increases, following the
expected trend.

Python Sort (Python's built-in sorting function)
consistently shows the fastest execution times across all
data sizes, maintaining its efficiency and scalability. Quick
Sort is the second most efficient sorting algorithm. Heap
Sort, Shell Sort, and Merge Sort tend to get slower as data
size increases, with Heap Sort being the slowest of these
three specific sorting algorithms.

For the largest data sets with 1,000,000 elements, the
difference in execution time between the sorting algorithms
is apparent, with Quick Sort and Python Sort being much
more efficient than the others. When data sizes reach
1,000,000 elements, execution times vary greatly between
sorting algorithms, highlighting the importance of choosing
the right sorting algorithm for a particular use case.

Other classical algorithms are still reliable for use in
small data sets (1000 elements and below) but in very large
data sets (100,000 elements and above), Quick Sort and
Python Sort are the most efficient sorting algorithms. When
choosing a sorting algorithm, we need to consider factors
such as worst-case time complexity, memory usage, and
specific application requirements.

Data set analysis highlights the variation in
performance of different sorting algorithms as the data size
increases. Quick Sort and Python Sort consistently stand
out as efficient options for sorting small and very large data
sets, making them the preferred choice for most practical
applications. However, the choice should be aligned with
your application's specific needs, taking into account
factors other than execution time, such as memory usage.

REFERENCES

[1] H. Cormen Thomas, E. Leiserson Charles, L. Rivest
Ronald, Stein Clifford. Introduction to Algorithms:
Third Edition. MIT Press, 2009. Massachusetts
Institute-of-Technology-Cambridge.
https://dahlan.unimal.ac.id/files/ebooks/2009%20I
ntroduction%20to%20Algorithms%20Third%20Ed
.pdf.

[2] Kurnia, Firdilla (2022, December 28). Algoritma:
Pengertian, Ciri-ciri, Jenis, Serta Fungsi dan
Manfaatnya.Dailysocial.
https://dailysocial.id/post/algoritma-adalah.

[3] Laitinen, S. (2010). Better Games Through
Usability Evaluation and Testing.
http://www.gamasutra.com/view/feature/2333/bette
r_games_through_u...

[4] Anggraini Kusumaningrum, 2020. Perbandingan
Kecepatan Antara Selection Sort, Insertion Sort,

17

JISA (Jurnal Informatika dan Sains) (e-ISSN: 2614-8404) is published by Program Studi Teknik Informatika, Universitas Trilogi

under Creative Commons Attribution-ShareAlike 4.0 International License.

JISA (Jurnal Informatika dan Sains)
Vol. 07, No. 01, June 2024

e-ISSN : 2614-8404
p-ISSN: 2776-3234

Dan Bubble Sort. Teknomatika: Jurnal Informatika
Dan Komputer, 3(1), 63-70. Retrieved from
https://ejournal.unjaya.ac.id/index.php/teknomatika
/article/view/363.

[5] Nicolas Auger, Vincent Jugé, Cyril Nicaud, Carine
Pivoteau, 2018. On the Worst-Case Complexity of
TimSort. France: 26th Annual European
Symposium on-Algorithms-(ESA 2018).-

DOI: https://doi.org/10.48550/arXiv.1805.08612.

[6] Canaan, C. et al. “Popular sorting algorithms - TI
Journals.” World Applied Programming (2012): n.
Pag.
https://www.semanticscholar.org/paper/Popular-
sorting-algorithms-TI-Journals-Canaan-
Garai/432ba0382141cacef751199288147d4daaeb3
cd7

[7] Rumapea, Yolanda Y. P. Analisis Perbandingan
Metode Algoritma Quick Sort dan Merge Sort
dalam Pengurutan Data terhadap Jumlah Langkah
dan Waktu. Methodika, vol. 3, no. 2, 2017, pp. 5-9,
https://media.neliti.com/media/publications/345425
-analisis-perbandingan-metode-algoritma-q-
e2e2d79a.pdf.

[8] Oladipupo Esau Taiwo, Abikoye Oluwakemi
Christianah, Akande Noah Oluwatobi, Kayode
Anthonia Aderonke, Adeniyi Jide kehinde,
Comparative Study Of Two Divide And Conquer
Sorting Algorithms: Quicksort And Mergesort,
Procedia Computer Science, Volume 171, 2020,
Pages 2532-2540,-ISSN-1877-0509,
https://doi.org/10.1016/j.procs.2020.04.274.

[9] S. Mansoor Sarwar, Mansour H.A. Jaragh, Mike
Wind, An empirical study of the run-time behavior
of quicksort, Shellsort and mergesort for medium to
large size data, Computer Languages, Volume 20,
Issue 2, 1994,-Pages-127-134,-ISSN-0096-0551,
https://doi.org/10.1016/0096-0551(94)90019-1.

[10] Abu Sara, M. R., Klaib, M. F. J., & Hasan, M.
(2020). Ems: An Enhanced Merge Sort Algorithm
By Early Checking Of Already Sorted Parts.
International Journal of Software Engineering and
Computer Systems,-5(2),-15–25.-Retrieved-from
https://journal.ump.edu.my/ijsecs/article/view/3525
.

[11] Alkharabsheh, Khalid & Alturani, Ibrahim &
Alturani, Abdallah & Zanoon, Dr.Nabeel. (2013).
Review on Sorting Algorithms A Comparative
Study. International Journal of Computer Science
and Security (IJCSS). 7.
https://www.researchgate.net/publication/2599119
82_Review_on_Sorting_Algorithms_A_Comparati
ve_Study.

[12] Adesina, Opeyemi. (2013). A Comparative Study of
Sorting Algorithms. African Journal of Computing
& ICT.-6.-199-206.
https://www.researchgate.net/publication/2888256
00_A_Comparative_Study_of_Sorting_Algorithms
.

[13] Al Rivan, Muhammad Ezar. "Perbandingan
Kecepatan Gabungan Algoritma Quick Sort Dan
Merge Sort Dengan Insertion Sort, Bubble Sort Dan

Selection Sort." Jurnal Teknik Informatika dan
Sistem Informasi, vol. 3, no. 2, 2017, doi:
10.28932/jutisi.v3i2.629.

[14] You Yang, Ping Yu and Yan Gan, "Experimental
study on the five sort algorithms" 2011 Second
International Conference on Mechanic Automation
and Control Engineering, Inner Mongolia, China,
2011, pp. 1314-1317, doi:
10.1109/MACE.2011.5987184.

[15] Krishna, Sai. (2017). Comparative Analysis of
Bucket and-Radix-Sorting.
DOI: 10.13140/RG.2.2.13755.00807

[16] Kazim, A. A Comparative Study of Well Known
Sorting Algorithms. International Journal of
Advanced Research in Computers. Science. 2016;
8(1):277-280. doi :
https://doi.org/10.26483/ijarcs.v8i1.2903.

[17] Mitra, Avik & Kothari, Jash & Ganguly, Annesa.
(2019). Analysis Of Shellsort Algorithms. 10. 48-51.
10.26483/ijarcs.v10i3.643.

[18] MacIver, David R. (11 January 2010).
"Understanding Timsort, Part 1: Adaptive Merge
Sort". Retrieved 28 October-2023.
https://github.com/python/cpython/blob/main/Obje
cts/listsort.txt.

[19] Peters, Tim. "listsort.txt". CPython git repository.
Retrieved-28-October-2023.
https://svn.python.org/projects/python/trunk/Object
s/listsort.txt.

[20] "listsort.txt". Python source code. 18 May 2022.
Archived from the original on 28 January 2016.
https://hmn.wiki/id/Timsort.

[21] Tim Peters. Timsort description, accessed 28
October 2023.-URL:
http://svn.Python.org/projects/Python/trunk/Object
s/listsort.txt.

18

