Comparison of Holt Winters and Simple Moving Average Models to Identify the Best Model for Predicting Flood Potential Based on the Normalized Difference Water Index
Abstract
Flood is a condition in which water cannot be accommodated in a drainage channel such as a river or river. An area is said to be flooded if the water in the area is inundated in large quantities so that it can cover all or most of a large area. Determining forecasting or prediction on a potential in the long or short term, especially changes in water content levels in an area, requires a method, model, or approach that must be well tested. The lower the error value in a model, the better the model for testing a forecast. One of the data that can be used for analysis of potential flood models is the use of remote sensing data with technology from Landsat 8. The advantage of sensing data from Landsat 8 is that it has data good history and allows to see changes in land cover from year to year in an area. The purpose of this study was to determine the best model for forecasting the potential for flooding in an area using the Holt Winters model and the Simple Moving Average. The result of this research is that the RMSE, MAE, MAPE, MSE values in the Holt Winters model are 0.03598683, 0.02748707, 0.13944356, 0.00129505 while the RMSE, MAE, MAPE, MSE values on the Simple Moving Average are 0, 09681483, 0.06338657, 0.53775228, 0.00937311. The Holt Winters model is the best model of the Simple Moving Average because the forecast error value has a low value.
Keywords
Full Text:
PDFReferences
Fitsolyna, B., Permana, A., Wardani, A. P. K., Veritawati, I., & Maspiyanti, F. (2019). Pencarian Rute Terpendek Menggunakan Metode Bellman Ford Berbasis Spasial pada Daerah Rawan Banjir dan Macet (Studi Kasus: Bekasi). Jurnal Ilmiah FIFO, 11(1), 11. https://doi.org/10.22441/fifo.2019.v10i1.002
Abdillah, G., Putra, F. A., Renaldi, F., Informatika, P. S., Jenderal, U., Yani, A., Barat, J., & Cimahi, K. (2016). PENERAPAN DATA MINING PEMAKAIAN AIR PELANGGAN UNTUK MENENTUKAN KLASIFIKASI POTENSI PEMAKAIAN AIR PELANGGAN BARU DI PDAM TIRTA RAHARJA MENGGUNAKAN ALGORITMA K-MEANS. SENTIKA 2016.
Suwarsono, Nugroho, J. T., & Wiweka. (2013). Identification of inundated area using normalized difference water index (NDWI) on lowland region of java island. 34th Asian Conference on Remote Sensing 2013, ACRS 2013. https://doi.org/10.30536/j.ijreses.2013.v10.a1850
Fatimah, F., Tejawati, A., & Puspitasari, N. (2018). Prediksi Pemakaian Air PDAM Menggunakan Metode Simple Moving Average. Jurnal Rekayasa Teknologi Informasi (JURTI). https://doi.org/10.30872/jurti.v2i1.1410
Utami, T. W., & Darsyah, M. Y. (2015). Peramalan Data Saham Dengan Model Winter ’ S. Statistika, Vol. 3, No. 2, November 2015, 3(2), 1–4.
Darul, A., Irawan, D. E., Ajeng, R., Roekmi, K., & Oktavia, P. (2017). PRELIMINARY STUDY NORMALIZED DIFFERENCE WATER INDEX DI WILAYAH RESAPAN AIRTANAH KABUPATEN BEKASI. Jurnal Geografi GEA. https://doi.org/http://dx.doi.org/10.17509/gea.v17i2.8134
Chyan, P., Tetap, D., Teknologi, F., Atma, U., Makassar, J., Pendahuluan, I., & Digital, A. P. C. (2017). Penerapan Image Enhancement Algorithm Untuk Meningkatkan Kualitas Citra Tak Bergerak. 12, 278–281.
Anggraini, N., Marpaung, S., & Hartuti, M. (2018). ANALISIS PERUBAHAN GARIS PANTAI UJUNG PANGKAH DENGAN MENGGUNAKAN METODE EDGE DETECTION DAN NORMALIZED DIFFERENCE WATER INDEX (UJUNG PANGKAH SHORELINE CHANGE ANALYSIS USING EDGE DETECTION METHOD AND NORMALIZED DIFFERENCE WATER INDEX). Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital. https://doi.org/10.30536/j.pjpdcd.1017.v14.a2545
Sulistyanto, P., Wahyunggoro, O., & Cahyadi, A. I. (2015). Pengolahan Isyarat Load cell Menggunakan Metode Simple Moving Average Tingkat Dua dan Weighted Moving Average Tingkat Dua untuk Pencarian Titik Referensi. 31–35.
Sinay, L. J., Pentury, T., & Anakotta, D. (2017). PERAMALAN CURAH HUJAN DI KOTA AMBON MENGGUNAKAN METODE HOLT-WINTERS EXPONENTIAL SMOOTHING. BAREKENG: Jurnal Ilmu Matematika Dan Terapan. https://doi.org/10.30598/barekengvol11iss2pp101-108
Jatmiko, Y. A., Rahayu, R. L., & Darmawan, G. (2017). Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters dengan Singular Spectrum Analysis (SSA). Jurnal Matematika “MANTIK.” https://doi.org/10.15642/mantik.2017.3.1.13-22
Aini, N., Sinurat, S., & Hutabarat, S. A. (2018). Penerapan Metode Simple Moving Average Untuk Memprediksi Hasil Laba Laundry Karpet Pada CV. Homecare. JURIKOM (Jurnal Riset Komputer), 5(2), 167–175. http://ejurnal.stmik-budidarma.ac.id/index.php/jurikom/article/view/656
Laurensz, B., Lawalata, F., Yulianto, S., & Prasetyo, J. (2018). Potensi Resiko Banjir dengan Menggunakan Citra Satelit (Studi Kasus : Kota Manado, Provinsi Sulawesi Utara). Indonesian Journal of Computing and Modeling.
Szabó, S., Gácsi, Z., & Balázs, B. (2016). Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landscape & Environment. https://doi.org/10.21120/le/10/3-4/13
Dawwas, R. H., Darlis, D., & Novianti, A. (2020). Sistem Informasi Untuk Absensi Berbasis Image Processing Information System for Absention Based on Image Processing. E-Proceeding of Applied Science.
Kanah, A. P., & Novera, H. (2018). Pemilihan Teknik Sampling Berdasarkan Perhitungan Efisiensi Relatif. Jurnal Statistika.
Staviana, E., Kusrini, K., & Luthfi, E. T. (2020). Sistem Peramalan Kebutuhan Stok Obat Menggunakan Metode Holt-Winters. Jurnal Informa : Jurnal Penelitian Dan Pengabdian Masyarakat. https://doi.org/10.46808/informa.v5i4.154
DOI: https://doi.org/10.31326/jisa.v5i2.1316
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Raka Hikmah Ramadhan, Roni Yusman, Gatot Tri Pranoto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JOURNAL IDENTITY
Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December
Language: Indonesia & English
APC: The Journal Charges Fees for Publishing
Indexing: EBSCO , DOAJ, Google Scholar, Arsip Relawan Jurnal Indonesia, Directory of Research Journals Indexing, Index Copernicus International, PKP Index, Science and Technology Index (SINTA, S4) , Garuda Index
OAI address: http://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contact: jisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi
In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal Indonesia, Jurnal Teknologi dan Sistem Komputer (JTSiskom)
JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.