Analysis Manipulation Copy-Move on Image Digital using SIFT Method and Histogram Color RGB

Muhamad Masjun Efendi, Salman Salman, Moh. Subli

Abstract


The application of the SIFT (Scale Invariant feature transform) algorithm and the RGB color histogram in Matlab can detect the suitability of objects in digital images and perform tests accurately. In this study, we discuss the implementation to obtain object compatibility on digital images that have been manipulated using the SIFT Algorithm method on the Matlab source, namely by comparing the original image with the manipulated image. The suitability of objects in digital images is obtained from the large number of keypoints obtained, other additional parameters, namely comparing the number of pixels in the analyzed image, as well as changes in the histogram in RGB color in each analyzed image. The purpose of this research is how to apply the SIFT (Scale Invariant feature transform) Algorithm and RGB color histogram to detect the suitability of objects in digital images and perform tests accurately. This study discusses the implementation to obtain object compatibility in digital images that have been manipulated using the SIFT Algorithm method on Matlab sources, namely by comparing the original image with the manipulated image. The suitability of objects in digital images is obtained from the large number of keypoints obtained, other additional parameters, namely comparing the number of pixels in the analyzed image, as well as changes in the histogram in RGB color in each analyzed image

Keywords


Image Processing, Copy-Move, SIFT, Histogram RGB

Full Text:

PDF

References


M. Koeshardianto, “Pencocokan Obyek Wajah Menggunakan Metode Sift ( Scale Invariant Feature Transform ),” Nero, vol. 1, no. 1, pp. 53–59, 2014.

A. Setiyawan and R. S. Basuki, “Pencocokan Citra Berbasis Scale Invariant Feature Transform (SIFT) menggunakan Arc Cosinus,” J. Tek. Inform., pp. 1–4, 2014.

S. Amtullah and D. A. Koul, “Passive Image Forensic Method to detect Copy Move Forgery in Digital Images,” IOSR J. Comput. Eng., vol. 16, no. 2, pp. 96–104, 2014, doi: 10.9790/0661-1621296104.

N. T. Anh, H. T. T. Hang, and G. Chen, “One approach in the time domain in detecting copy-move of speech recordings with the similar magnitude,” Int. J. Eng. Appl. Sci., vol. 6, no. 4, pp. 9–11, 2019, doi: 10.31873/ijeas/6.4.2019.05.

D. Mahalakshmi and C. Science, “Copy - Move Image Forgery Detection System Using Hybrid Method,” Int. J. Eng. Sci. Invent. Res. Dev., vol. III, no. XI, pp. 692–698, 2017.

K. Inoue, K. Hara, and K. Urahama, “RGB color cube-based histogram specification for hue-preserving color image enhancement,” J. Imaging, vol. 3, no. 3, 2017, doi: 10.3390/jimaging3030024.

S. Korman, D. Reichman, G. Tsur, and S. Avidan, “FasT-match: Fast affine template matching,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2331–2338, 2013, doi: 10.1109/CVPR.2013.302.

E. Salahat and M. Qasaimeh, “Recent advances in features extraction and description algorithms: A comprehensive survey,” Proc. IEEE Int. Conf. Ind. Technol., pp. 1059–1063, 2017, doi: 10.1109/ICIT.2017.7915508.

G. Dakhode and A. P. P. K. Chourey, “Forensic Technique for Detection of Image Forgery,” Int. J. Adv. Eng. Res. Sci., vol. 4, no. 1, pp. 189–193, 2017, doi: 10.22161/ijaers.4.1.31.

A. Kashyap, M. Agarwal, and H. Gupta, “Detection of copy-move image forgery using SVD and cuckoo search algorithm,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 79–87, 2018, doi: 10.14419/ijet.v7i2.13.11604.

P. E. Kresnha, E. Susilowati, and Y. Adharani, “Pendeteksian Manipulasi Citra Berbasis Copy-move Forgery Menggunakan Euclidean DIstance dengan Single Value Decomposition,” Semin. Nas. Teknol. Inf. dan Multimed. 2016, pp. 6–7, 2016.

X. Wang, “The research of digital recognition technology based on bp neural network,” Biotechnol. An Indian J., vol. 8, no. 2, pp. 180–185, 2013.

I. T. Ahmed, B. T. Hammad, and N. Jamil, “A comparative analysis of image copy-move forgery detection algorithms based on hand and machine-crafted features,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 2, pp. 1177–1190, 2021, doi: 10.11591/IJEECS.V22.I2.PP1177-1190.

B. Li, T. T. Ng, X. Li, S. Tan, and J. Huang, “Revealing the trace of high-quality JPEG compression through quantization noise analysis,” IEEE Trans. Inf. Forensics Secur., vol. 10, no. 3, pp. 558–573, 2015, doi: 10.1109/TIFS.2015.2389148.

Z. Xiang, P. Bestagini, S. Tubaro, and E. J. Delp, “Forensic Analysis and Localization of Multiply Compressed MP3 Audio Using Transformers,” pp. 2929–2933, 2022, doi: 10.1109/icassp43922.2022.9747639.

T. Julliand et al., “Automated Image Splicing Detection from Noise Estimation in Raw Images To cite this version : HAL Id : hal-01510075 Automated Image Splicing Detection from Noise Estimation in Raw Images,” 2017.

B. Qiang, R. Chen, M. Zhou, Y. Pang, Y. Zhai, and M. Yang, “Convolutional neural networks-based object detection algorithm by jointing semantic segmentation for images,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–14, 2020, doi: 10.3390/s20185080.




DOI: https://doi.org/10.31326/jisa.v5i2.1334

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muhamad Masjun Efendi, Salman Salman, Moh. Subli

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.