The Classification of Mushroom Types Using Naïve Bayes and Principal Component Analysis

Deby Rianasari, Meina Noor Triana, Milla Rosiana Dewi, Yulia Astutik, Rio wirawan

Abstract


Indonesia is one of tropical countries with high humidity which makes it possible for various plants and microorganisms to grow properly. One of the microorganisms that shall grow well in Indonesia is be considered as fungi or mushrooms. They have several types including poisonous and edible mushrooms that shall be consumed by human beings. The purpose of this research is to make it easier to classify between the types of poisonous mushrooms and edible mushrooms which can be consumed by using the Naïve Bayes algorithm to get the accurate classification results. In this research, the Naive Bayes algorithm is used to classify the types of mushrooms by utilizing the Principal Component Analyst technique which serves to reduce the number of features applied in the dataset. The data collection technique used in the research is by documenting the official website of the UCI Machine Learning Repository whereas the Mushrooms dataset consists of 22 features and 1 class are applied. After classifying using Naïve Bayes with Principal Component Analyst, then the researcher is evaluating using the 10-Fold Cross Validation technique whereas the results obtained are pc = 10 and the classification result is be considered as 84%.


Keywords


Dimension Reduction; Mushrooms Dataset; Principal Component Analyst

Full Text:

PDF

References


Fitriani, L., Krisnawati, Y., Anorda, M. O. R., & Lanjarini, K. (2018). JENIS-JENIS DAN POTENSI JAMUR MAKROSKOPIS YANG TERDAPAT DI PT PERKEBUNAN HASIL MUSI LESTARI DAN PT DJUANDA SAWIT KABUPATEN MUSI RAWAS. Jurnal Biosilampari: Jurnal Biologi. https://doi.org/10.31540/biosilampari.v1i1.49

Parjimo, H., & Andoko, A. (2007). Budi Daya Jamur (Jamur Kuping, Jamur Tiram, Jamur Merang).

Prihatini, R. (n.d.). Penerapan Data Mining sebagai Evaluasi Ketepatan Akurasi terhadap Klasifikasi Mushroom Data Set. Academia.Edu, 11.

Aruan, T. (2017). IDENTIFIKASI JENIS TANAMAN JAMUR BERACUN MENGGUNAKAN PENDEKATAN K-NEAREST NEIGHBOR.

Prayoga, Septian Arie, I. N. and T. N. W. (2019). Implementasi Metode Naive Bayes Classifier Untuk Identifikasi Jenis Jamur. Ilmiah Informatika, Arsitektur Dan Lingkungan, 14(2), 134–144. https://jurnal.pelitabangsa.ac.id/index.php/pelitatekno/article/view/239/191

Misra, P., & Yadav, A. S. (2019). Impact of Preprocessing Methods on Healthcare Predictions. SSRN Electronic Journal, Ml. https://doi.org/10.2139/ssrn.3349586

Muttaqin, F. A., & Bachtiar, A. M. (n.d.). IMPLEMENTASI TEKS MINING PADA APLIKASI PENGAWASAN PENGGUNAAN INTERNET ANAK " DODO KIDS BROWSER " Jurnal Ilmiah Komputer dan Informatika ( KOMPUTA ) Jurnal Ilmiah Komputer dan Informatika ( KOMPUTA ).

Tuntun, R. (2022). Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation. 6, 2111–2119. https://doi.org/10.30865/mib.v6i4.4681

Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition. In Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition. https://doi.org/10.1002/9781118874059

Hediyati, D., & Suartana, I. M. (2021). Penerapan Principal Component Analysis (PCA) Untuk Reduksi Dimensi Pada Proses Clustering Data Produksi Pertanian Di Kabupaten Bojonegoro. Journal of Information Engineering and Educational Technology. https://doi.org/10.26740/jieet.v5n2.p49-54

Sartika, D., & Saluza, I. (2022). Penerapan Metode Principal Component Analysis (PCA) Pada Klasifikasi Status Kredit Nasabah Bank Sumsel Babel Cabang KM 12 Palembang Menggunakan Metode Decision Tree. Generic, 14(2), 45–49.

Nasution, M. Z., Nababan, A. A., & Syaliman, K. U. (2019). PENERAPAN PRINCIPAL COMPONENT ANALYSIS ( PCA ) DALAM PENENTUAN FAKTOR DOMINAN YANG MEMPENGARUHI PENGIDAP KANKER SERVIKS ( Studi Kasus : Cervical Cancer Dataset ). 3(1), 204–210.

Telaumbanua, K., Sudarto, S., Butar-Butar, F., & Bilqis, P. S. (2021). Identifikasi Sampah Berdasarkan Tekstur Dengan Metode GLCM dan GLRLM Menggunakan Improved KNN. Explorer. https://doi.org/10.47065/explorer.v1i2.94

Bramer, M. (2016). Introduction to Data Mining. https://doi.org/10.1007/978-1-4471-7307-6_1

Saputro, I. W., & Sari, B. W. (2020). Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa. Creative Information Technology Journal. https://doi.org/10.24076/citec.2019v6i1.178




DOI: https://doi.org/10.31326/jisa.v5i2.1380

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Deby Rianasari, Meina Noor Triana, Milla Rosiana Dewi, Yulia Astutik, Rio wirawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.