Application of CNN in the Classification of Chili Varieties for Agricultural Efficiency
Abstract
This research focuses on the problem of classifying chili harvests which is still done manually by farmers. This manual classification process will of course take a long time, require a lot of energy and will feel tedious. This research aims to develop a classification system for chili types using the Convolutional Neural Network (CNN) method. By utilizing CNN technology, it is hoped that the chili grouping process can be carried out automatically with a high level of accuracy, thereby increasing work efficiency and reducing errors in chili grouping. The data used in this research is primary data with a total of 500 images of chilies divided into 4 classes. These images were taken using a Samsung A7 smartphone camera under consistent conditions: all photos were captured during daylight hours with the same camera angle. The training and testing results of the CNN model in classifying types of chili showed an accuracy of 99.5% in the training stage and reached an accuracy of 94% in the testing stage. Based on these results, it shows that the application of the CNN method in classifying chili types can work very well and effectively.
Keywords
Full Text:
PDFReferences
Isnirobit, "Analisis Pengaruh Luas Panen, Harga Jual dan Produktivitas Terhadap Jumlah Produksi Cabai Merah (Capsicum annum L.) di Indonesia Tahun 1999-2019," AGRILAND Jurnal Ilmu Pertanian, vol. 10, no. 3, pp. 278-290, 2022.
D. R. Suryani, Outlook Cabai Komoditas Pertanian Subsektor Hortikultura, Pusat Data dan Sistem Informasi Pertanian, 2020.
D. W. G. ,. A. R. ,. P. W. ,. N. H. Reny Herawati, "Penerapan Budidaya Cabai Dengan Sistem Tanam Kombinasi Pada Kelompok Wanita Tani Anggrek Pematang Gubernur Kota Bengkulu," Jurnal Ilmiah Pengembangan dan Penerapan IPTEKS, vol. 21, no. 01, p. 15 – 24, 2023.
H. G. R. S. Y. H. D. Dahlia Nauly1, "Peningkatan Pengetahuan Petani melalui Penyuluhan Pascapanen Cabai pada Kelompok Tani Kebun Berseri, Bintaro, Jakarta Selatan," Jurnal Ilmiah Pengabdian kepada Masyarakat, vol. 8, no. 2, pp. 204- 211, 2022.
A. W. P. D. R. C. R. Dwi Suci Anggraeni, "METODE ALGORITMA CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI PENYAKIT TANAMAN CABAI," STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 7, no. 1, pp. 73-78, 2022.
T. H. Rangga Pebrianto, "Optimasi Sistem Klasifikasi Biji Tanaman Cabai Menggunakan CNN: Pendekatan Inovatif dalam Agribisnis," IJCIT (Indonesian Journal on Computer and Information Technology), vol. 8, no. 2, pp. 121-129, 2023.
N. H. D. R. S. H. Fani Nurona Cahya, "Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN)," SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 3, pp. 618-626, 2021.
B. H. Abwabul Jinan, "Klasifikasi Penyakit Tanaman Padi Mengunakan Metode Convolutional Neural Network Melalui Citra Daun (Multilayer Perceptron)," Journal of Computer and Engineering Science, vol. 1, no. 2, pp. 37-44, 2022.
I. S. K. I. A. B. Ahmad, "Klasifikasi Jenis Buah Tomat Menggunakan Covolutional Neural Network," Jurnal Ilmiah Ilmu Komputer, vol. 2, no. 2, pp. 83-89, 2023.
I. S. Yoga Purna Irawan, "Klasifikasi Jenis Aglaonema Berdasarkan Citra Daun Menggunakan Convolutional Neural Network (CNN)," JURNAL INFORMATION SYSTEM & ARTIFICLAL INTELLIGENCE , vol. 2, no. 2, pp. 150-156, 2022.
S. H. B. ,. T. A. A. ,. Y. P. P. P. Sandy Andika Maulana, "Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN)," Jurnal Penelitian Rumpun Ilmu Teknik (JUPRIT), vol. 2, no. 4, pp. 122-130, 2023.
E. Oktafanda, "Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN)," Jurnal Informatika Ekonomi Bisnis, vol. 4, no. 3, pp. 72-77, 2022.
N. A. Iip Supriyani, "Identifikasi Nomor Rumah Pada Citra Digital Menggunakan Neural Network," METHODIKA, vol. 8, no. 1, pp. 18-21, 2022.
R. E. P. Rhyosvaldo Aurellio Tilasefana, "Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca," Journal of Informatics and Computer Science, vol. 05, no. 01, pp. 48-57, 2023.
R. A. P. Anhar, "Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN)," Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 2, pp. 466 - 478, 2023.
S. D. S. Khairul Azmi, "Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat," Jurnal Unitek, vol. 16, no. 1, pp. 28-40, 2023.
DOI: https://doi.org/10.31326/jisa.v7i2.2062
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Febrian Trio Pamungkas, Irsyad Zainal Muttaqin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JOURNAL IDENTITY
Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December
Language: English
APC: The Journal Charges Fees for Publishing
Indexing: EBSCO , DOAJ, Google Scholar, Arsip Relawan Jurnal Indonesia, Directory of Research Journals Indexing, Index Copernicus International, PKP Index, Science and Technology Index (SINTA, S4) , Garuda Index
OAI address: http://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contact: jisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi
In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal Indonesia, Jurnal Teknologi dan Sistem Komputer (JTSiskom)
JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.