Decision Tree for Determining Hospital Treatment for Covid-19 Patients Based on Hematology Parameters Using the C5.0 Algorithm
Abstract
Keywords
Full Text:
PDFReferences
A. Asan et al., “Do initial hematologic indices predict the severity of covid-19 patients?,” Turk J Med Sci, vol. 51, no. 1, 2021, doi: 10.3906/sag-2007-97.
M. Khishe, F. Caraffini, and S. Kuhn, “Evolving deep learning convolutional neural networks for early covid-19 detection in chest x-ray images,” Mathematics, vol. 9, no. 9, 2021, doi: 10.3390/math9091002.
B. Debuc and D. M. Smadja, “Is COVID-19 a New Hematologic Disease?,” Stem Cell Rev Rep, vol. 17, no. 1, 2021, doi: 10.1007/s12015-020-09987-4.
E. Terpos et al., “Hematological findings and complications of COVID-19,” 2020. doi: 10.1002/ajh.25829.
A. Rahman, R. Niloofa, U. Jayarajah, S. De Mel, V. Abeysuriya, and S. L. Seneviratne, “Hematological abnormalities in COVID-19: A narrative review,” 2021. doi: 10.4269/ajtmh.20-1536.
U. S. Aesyi, T. W. Diwangkara, and R. T. Kurniawan, “DIAGNOSA PENYAKIT DISK HERNIA DAN SPONDYLOLISTHESIS MENGGUNAKAN ALGORITMA C5,” Telematika, vol. 16, no. 2, 2020, doi: 10.31315/telematika.v16i2.3181.
E. R. Jorda and A. R. Raqueno, “Predictive model for the academic performance of the engineering students using CHAID and C 5.0 algorithm,” International Journal of Engineering Research and Technology, vol. 12, no. 6, 2019.
P. N. Patil, R. Lathi, and V. Chitre, “Comparison of C5 . 0 & CART Classification algorithms using pruning technique,” International Journal of Engineering Research & Technology, vol. 1, no. 4, 2012.
E. Acuña and C. Rodriguez, “The Treatment of Missing Values and its Effect on Classifier Accuracy,” in Classification, Clustering, and Data Mining Applications, 2004. doi: 10.1007/978-3-642-17103-1_60.
EINSTEIN DATA4U, “Diagnosis of COVID-19 and its clinical spectrum.” Accessed: Sep. 19, 2024. [Online]. Available: https://www.kaggle.com/datasets/einsteindata4u/covid19
A. Sadeghi et al., “COVID-19 and ICU admission associated predictive factors in Iranian patients,” Caspian J Intern Med, vol. 11, 2020, doi: 10.22088/cjim.11.0.512.
M. Karimi Shahri, H. R. Niazkar, and F. Rad, “COVID-19 and hematology findings based on the current evidences: A puzzle with many missing pieces,” 2021. doi: 10.1111/ijlh.13412.
Y. Pan et al., “Can routine laboratory tests discriminate SARS‐CoV‐2‐infected pneumonia from other causes of community‐acquired pneumonia?,” Clin Transl Med, vol. 10, no. 1, 2020, doi: 10.1002/ctm2.23.
Y.-P. Liu et al., “Combined use of the neutrophil-to-lymphocyte ratio and CRP to predict 7-day disease severity in 84 hospitalized patients with COVID-19 pneumonia: a retrospective cohort study,” Ann Transl Med, vol. 8, no. 10, 2020, doi: 10.21037/atm-20-2372.
G. Lippi, B. M. Henry, and E. J. Favaloro, “Mean Platelet Volume Predicts Severe COVID-19 Illness,” 2021. doi: 10.1055/s-0041-1727283.
J. Wagner, A. DuPont, S. Larson, B. Cash, and A. Farooq, “Absolute lymphocyte count is a prognostic marker in Covid-19: A retrospective cohort review,” Int J Lab Hematol, vol. 42, no. 6, 2020, doi: 10.1111/ijlh.13288.
J. Mao, R. Dai, R. C. Du, Y. Zhu, L. P. Shui, and X. H. Luo, “Hematologic changes predict clinical outcome in recovered patients with COVID-19,” Ann Hematol, vol. 100, no. 3, 2021, doi: 10.1007/s00277-021-04426-x.
C. Qin et al., “Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China,” Clin Infect Dis, vol. 71, no. 15, pp. 762–768, Aug. 2020, doi: 10.1093/CID/CIAA248.
C. Wang et al., “Red cell distribution width (RDW): a prognostic indicator of severe COVID-19,” Ann Transl Med, vol. 8, no. 19, 2020, doi: 10.21037/atm-20-6090.
S. M. Attiyah, H. M. Elsayed, J. A. Al Mughales, A. B. Moharram, and M. A. Fattah, “Critical cases of COVID-19 patients can be predicted by the biomarkers of complete blood count,” Indian J Sci Technol, vol. 13, no. 48, pp. 4739–4745, Jan. 2020, doi: 10.17485/IJST/V13I48.2033.
DOI: https://doi.org/10.31326/jisa.v7i2.2106
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Joko Riyono, Christina Eni Pujiastuti, Supriyadi, Dody Prayitno, Aina Latifa Riyana Putri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JOURNAL IDENTITY
Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December
Language: English
APC: The Journal Charges Fees for Publishing
Indexing: EBSCO , DOAJ, Google Scholar, Arsip Relawan Jurnal Indonesia, Directory of Research Journals Indexing, Index Copernicus International, PKP Index, Science and Technology Index (SINTA, S4) , Garuda Index
OAI address: http://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contact: jisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi
In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal Indonesia, Jurnal Teknologi dan Sistem Komputer (JTSiskom)
JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.