Prediction of Carbon Emissions in Indonesia Using Machine Learning: A Focus on Environmental Impact

Rizaldi Putra, Memet Sanjaya, Deni Utama, Berliana Berliana

Abstract


Carbon emissions represent a critical driver of global climate change, exerting profound impacts on environmental sustainability and public health. This research examines Indonesia's carbon emission trends using a comprehensive dataset spanning global emissions from 1960 to 2018, with specific focus on Indonesia, obtained from Kaggle. Employing Linear Regression (LR) as the primary machine learning technique, the study effectively models and forecasts future carbon emission levels for Indonesia. The findings indicate a projected increase in emissions to 2.38 tons per capita annually by 2030, underscoring the urgent need for robust environmental policies.

Keywords


Machine Learning; Carbon Emission; Indonesia; Linear Regression

Full Text:

PDF

References


H. Dong, M. Xue, Y. Xiao, and Y. Liu, “Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization,” Sci. Total Environ., 2021, doi: 10.1016/j.scitotenv.2020.143688.

E. Lismiyah, M. Marselina, A. R. Taher, T. Gunarto, and N. Aida, “The Causality Between Energy Consumption and Carbon Emission in Indonesia,” J. Ris. Ilmu Ekon., vol. 4, no. 1, pp. 27–38, 2024, doi: 10.23969/jrie.v4i1.83.

E. Rehfuess, S. Mehta, and A. Prüss-Üstün, “Assessing household solid fuel use: Multiple implications for the Millennium Development Goals,” Environ. Health Perspect., 2006, doi: 10.1289/ehp.8603.

H. Wickham and G. Grolemund, R for Data Science: Visualize, Model, Transform, Tidy, and Import Data. 2023.

T. Setiyorini and R. T. Asmono, “Komparasi Metode Neural Network, Support Vector Machine Dan Linear Regression Pada Estimasi Kuat Tekan Beton,” J. TECHNO Nusa Mandiri, vol. 15, no. 1, p. 51, 2018, [Online]. Available: http://nusamandiri.ac.id

K. Kumari and S. Yadav, “Linear regression analysis study,” J. Pract. Cardiovasc. Sci., 2018, doi: 10.4103/jpcs.jpcs_8_18.

W McKinney, “pandas: a foundational Python library for data analysis and statistics,” Python high Perform. Sci. Comput. , 2011.

A. Raihan, D. A. Muhtasim, M. I. Pavel, O. Faruk, and M. Rahman, “An econometric analysis of the potential emission reduction components in Indonesia,” Clean. Prod. Lett., 2022, doi: 10.1016/j.clpl.2022.100008.

X. Zhang, H. Chen, J. Sun, and X. Zhang, “Predictive models of embodied carbon emissions in building design phases: Machine learning approaches based on residential buildings in China,” Build. Environ., vol. 258, 2024.

B. Wang, P. Zhang, X. Qi, G. Li, and J. Zhang, “Predicting ammonia emissions and global warming potential in composting by machine learning,” Bioresour. Technol., vol. 411, 2024.

Q. Li et al., “Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication,” Sci. Total Environ., 2017, doi: 10.1016/j.scitotenv.2016.10.080.

S. M. Chaudhry, R. Ahmed, M. Shafiullah, and T. L. Duc Huynh, “The impact of carbon emissions on country risk: Evidence from the G7 economies,” J. Environ. Manage., 2020, doi: 10.1016/j.jenvman.2020.110533.

D. Mominkhan et al., “The current state and potential evolution of carbon emissions in the healthcare sector: a narrative review article,” Front. Sustain. Energy Policy, 2023, doi: 10.3389/fsuep.2023.1230253.

A. L. Fanning and D. W. O’Neill, “The Wellbeing–Consumption paradox: Happiness, health, income, and carbon emissions in growing versus non-growing economies,” J. Clean. Prod., 2019, doi: 10.1016/j.jclepro.2018.11.223.

H. Wang et al., “Integrating BIM and machine learning to predict carbon emissions under foundation materialization stage: Case study of China’s 35 public buildings,” Front. Archit. Res., 2024, doi: 10.1016/j.foar.2024.02.008.




DOI: https://doi.org/10.31326/jisa.v7i2.2115

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rizaldi Putra, Memet Sanjaya, Deni Utama, Berliana Berliana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.