Vehicular Ad-Hoc Networks for Intelligent Transportation System: A Brief Review of Protocols, Challenges, and Future Research

Ketut Bayu Yogha Bintoro

Abstract


Vehicular Ad Hoc Networks (VANET) play an essential role in the advancement of intelligent transportation systems, facilitating real-time communication between vehicles (V2V), infrastructure (V2I), and surrounding environments (V2X). This systematic review analyzes a range of VANET routing protocols, highlighting the strengths and weaknesses of topology-based, position-based, cluster-based, and hybrid methods. Additionally, this review explores core challenges in VANET, including high mobility, data security, Quality of Service (QoS) requirements, and connectivity issues in dynamic and high-density traffic environments. The paper also provides insights into simulation tools and performance metrics employed in VANET research alongside practical applications in modern transportation systems, such as autonomous driving, traffic management, and safety-related communication. Furthermore, this review emphasizes the need for ongoing research to address the identified challenges and optimize VANET performance. Integrating emerging technologies, including 5G, artificial intelligence (AI), and edge computing, offers promising avenues for enhancing system efficiency and sustainability. This review establishes a comprehensive foundation for further advancements in VANET by highlighting key findings and research gaps. Ultimately, the effective implementation of VANET has the potential to significantly improve transportation safety, efficiency, and sustainability, contributing to the realization of smart city initiatives and innovative mobility solutions. This work aims to guide future research directions, ensuring that VANET continues to evolve in alignment with the demands of modern transportation systems and the broader context of intelligent mobility.

Keywords


VANET Protocols; Vehicle-to-Everything (V2X); Intelligent Transportation Systems; DSRC Standards; Autonomous Vehicles;

Full Text:

PDF

References


M. Veres and M. Moussa, “Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends,” IEEE Trans. Intell. Transp. Syst., pp. 1–17, 2019, doi: 10.1109/tits.2019.2929020.

A. Y. Gadalla, Y. S. Mohammed, A. I. Galal, and M. El-Zorkany, “Design and implementation of a safety algorithm on V2V routing protocol,” Int. J. Smart Sens. Intell. Syst., vol. 15, no. 1, pp. 1–18, 2022, doi: 10.2478/IJSSIS-2022-0004.

T. Sapna, K. Deshpande, and K. Ravi, “Study On Routing Protocols For MANETs,” Heliyon, vol. 5, no. June, pp. 322–325, 2019, doi: 10.1109/ctems.2018.8769137.

M. Oche, A. B. Tambuwal, C. Chemebe, R. M. Noor, and S. Distefano, VANETs QoS-based routing protocols based on multi-constrained ability to support ITS infotainment services, vol. 26, no. 3. Springer US, 2020. doi: 10.1007/s11276-018-1860-7.

C. Bensaid and S. Boukli-Hacene, “AODV-based key management in VANET,” Adv. Syst. Sci. Appl., vol. 19, no. 2, pp. 80–89, 2019, doi: 10.25728/assa.2019.19.2.707.

Ketut Bayu Yogha Bintoro, S. D. H. Permana, and A. Syahputra, “V2V Communication in Smart Traffic Systems : Current Status , Challenges and Future Perspectives,” vol. 19, no. 1, pp. 21–31, 2024.

C. Wang, S. Gong, A. Zhou, T. Li, and S. Peeta, “Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints,” Transp. Res. Part C Emerg. Technol., vol. 113, no. November 2018, pp. 124–145, 2020, doi: 10.1016/j.trc.2019.04.010.

A. Bazzi and A. Zanella, “Position based routing in crowd sensing vehicular networks,” Ad Hoc Networks, vol. 36, pp. 409–424, 2016, doi: 10.1016/j.adhoc.2015.06.005.

M. Mukhtaruzzaman and M. Atiquzzaman, “Clustering in vehicular ad hoc network: Algorithms and challenges,” Comput. Electr. Eng., vol. 88, no. October, p. 106851, 2020, doi: 10.1016/j.compeleceng.2020.106851.

E. Serigstad, B. O. H. Eriksen, and M. Breivik, “Hybrid Collision Avoidance for Autonomous Surface Vehicles,” IFAC-PapersOnLine, vol. 51, no. 29, pp. 1–7, 2018, doi: 10.1016/j.ifacol.2018.09.460.

W. Liang, Z. Li, H. Zhang, Y. Sun, and R. Bie, “Vehicular ad hoc networks: Architectures, Research issues, Challenges and trends,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8491, pp. 102–113, 2014, doi: 10.1155/2015/745303.

Y. Li, C. Tang, K. Li, X. He, S. Peeta, and Y. Wang, “Consensus-based cooperative control for multi-platoon under the connected vehicles environment,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 6, pp. 2220–2229, 2019, doi: 10.1109/TITS.2018.2865575.

S. Ali, “Vehicle to Vehicle communication,” 2019, doi: 10.13140/RG.2.2.24951.88487.

F. Belamri, S. Boulfekhar, and D. Aissani, “A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET),” Telecommun. Syst., vol. 78, no. 1, pp. 117–153, 2021, doi: 10.1007/s11235-021-00797-8.

M. M. Elsayed, K. M. Hosny, M. M. Fouda, and M. M. Khashaba, “Vehicles communications handover in 5G: A survey,” ICT Express, no. xxxx, 2022, doi: 10.1016/j.icte.2022.01.005.

Q. Tian, “Performance Evaluation of Machine Learning in Wireless Connected Robotics Swarms,” IEEE Access, vol. 8, pp. 1790–1802, 2020, doi: 10.1109/ACCESS.2019.2962222.

A. Dua, N. Kumar, and S. Bawa, “A systematic review on routing protocols for Vehicular Ad Hoc Networks,” Veh. Commun., vol. 1, no. 1, pp. 33–52, 2014, doi: 10.1016/j.vehcom.2014.01.001.

C. Tripp-Barba, A. Zaldívar-Colado, L. Urquiza-Aguiar, and J. A. Aguilar-Calderón, “Survey on routing protocols for vehicular ad Hoc networks based on multimetrics,” Electron., vol. 8, no. 10, pp. 1–32, 2019, doi: 10.3390/electronics8101177.

T. K. Bhatia, R. K. Ramachandran, R. Doss, and L. Pan, “A Survey on Controlling the Congestion in Vehicleto-Vehicle Communication,” ICRITO 2020 - IEEE 8th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir., pp. 573–578, 2020, doi: 10.1109/ICRITO48877.2020.9197884.

K. Bayu, Y. Bintoro, M. Marchenko, R. C. Saputra, A. Syahputra, and D. National, “Performance Analysis of AODV and DSDV Routing Protocols for UDP Communication in,” Sinkron, vol. 8, no. 4, pp. 2287–2297, 2024.

A. Mchergui, T. Moulahi, B. Alaya, and S. Nasri, “A survey and comparative study of QoS aware broadcasting techniques in VANET,” Telecommun. Syst., vol. 66, no. 2, pp. 253–281, 2017, doi: 10.1007/s11235-017-0280-9.

P. Kumar, A. Verma, and P. Singhal, “VANET protocols with challenges- A review,” Proc. 2019 6th Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2019, pp. 598–602, 2019.

M. A. Dian Khumara, L. Fauziyyah, and P. Kristalina, “Estimation of Urban Traffic State Using Simulation of Urban Mobility(SUMO) to Optimize Intelligent Transport System in Smart City,” 2018 Int. Electron. Symp. Eng. Technol. Appl. IES-ETA 2018 - Proc., pp. 163–169, 2019, doi: 10.1109/ELECSYM.2018.8615508.

S. Tsurumi and T. Fujii, “Reliable vehicle-to-vehicle communication using spectrum environment map,” Int. Conf. Inf. Netw., vol. 2018-Janua, pp. 310–315, 2018, doi: 10.1109/ICOIN.2018.8343131.

M. N. Tahir, K. Maenpaa, and T. Sukuvaara, “Analysis of SafeCOP Features in V2I and V2V Communication,” 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). IEEE, 2019. doi: 10.1109/vtcspring.2019.8746587.

D. Chen, M. Zhao, D. Sun, L. Zheng, S. Jin, and J. Chen, “Robust H∞ control of cooperative driving system with external disturbances and communication delays in the vicinity of traffic signals,” Phys. A Stat. Mech. its Appl., vol. 542, p. 123385, 2020, doi: 10.1016/j.physa.2019.123385.

L. Katsikas, K. Chatzikokolakis, and N. Alonistioti, “Implementing clustering for vehicular ad-hoc networks in NS-3,” ACM Int. Conf. Proceeding Ser., no. 825070, pp. 25–31, 2015, doi: 10.1145/2756509.2756520.

S. Gao, A. Lim, and D. Bevly, “An empirical study of DSRC V2V performance in truck platooning scenarios,” Digit. Commun. Networks, vol. 2, no. 4, pp. 233–244, 2016, doi: 10.1016/j.dcan.2016.10.003.

Z. Meng et al., “Guaranteed V2V QoS services implementation and field measurements in hybrid WAVELTE environments,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2016-Janua, 2016, doi: 10.1109/TENCON.2015.7373090.

S. Malik and P. K. Sahu, “A comparative study on routing protocols for VANETs,” Heliyon, vol. 5, no. 8, p. e02340, 2019, doi: 10.1016/j.heliyon.2019.e02340.

A. Roy and B. Paul, “Performance of AODV , DSR Routing Protocols in,” 2015 Int. Conf. Comput. Inf. Eng., pp. 50–53, 2015.

T. K. Priyambodo, D. Wijayanto, and M. S. Gitakarma, “Performance optimization of MANET networks through routing protocol analysis,” Computers, vol. 10, no. 1, pp. 1–13, 2021, doi: 10.3390/computers10010002.

S. Boussoufa-Lahlah, F. Semchedine, and L. Bouallouche-Medjkoune, “Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey,” Veh. Commun., vol. 11, pp. 20–31, 2018, doi: 10.1016/j.vehcom.2018.01.006.

S. Bitam, A. Mellouk, and S. Zeadally, “HyBR: A Hybrid Bio-inspired Bee swarm Routing protocol for safety applications in Vehicular Ad hoc NETworks (VANETs),” J. Syst. Archit., vol. 59, no. 10 PART B, pp. 953–967, 2013, doi: 10.1016/j.sysarc.2013.04.004.

F. Goudarzi, H. Asgari, and H. S. Al-Raweshidy, “Traffic-aware VANET routing for city environments-a protocol based on ant colony optimization,” IEEE Syst. J., vol. 13, no. 1, pp. 571–581, 2019, doi: 10.1109/JSYST.2018.2806996.

M. Hasanzadeh-Mofrad and A. Rezvanian, “Learning Automata Clustering,” J. Comput. Sci., vol. 24, pp. 379–388, 2018, doi: 10.1016/j.jocs.2017.09.008.

K. B. Y. Bintoro and T. K. Priyambodo, “Learning Automata-Based AODV to Improve V2V Communication in A Dynamic Traffic Simulation,” Int. J. Intell. Eng. Syst., vol. 17, no. 1, pp. 666–678, 2024, doi: 10.22266/ijies2024.0229.56.

R. Hajlaoui, H. Guyennet, and T. Moulahi, “A Survey on Heuristic-Based Routing Methods in Vehicular Ad-Hoc Network: Technical Challenges and Future Trends,” IEEE Sens. J., vol. 16, no. 17, pp. 6782–6792, 2016, doi: 10.1109/JSEN.2016.2583382.

P. K. Shrivastava and L. K. Vishwamitra, “Comparative analysis of proactive and reactive routing protocols in VANET environment,” Meas. Sensors, vol. 16, no. April, p. 100051, 2021, doi: 10.1016/j.measen.2021.100051.

K. B. Y. Bintoro, T. K. Priyambodo, and Y. P. Sardjono, “Smart AODV routing protocol strategies based on learning automata to improve V2V communication quality of service in VANET,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, 2024.

M. Malinverno, F. Raviglione, C. Casetti, C. F. Chiasserini, J. Mangues-Bafalluy, and M. Requena-Esteso, “A Multi-stack Simulation Framework for Vehicular Applications Testing,” DIVANet 2020 - Proc. 10th ACM Symp. Des. Anal. Intell. Veh. Networks Appl., pp. 17–24, 2020, doi: 10.1145/3416014.3424603.

R. Ali, D. N. Hakro, M. R. Tanweer, and A. A. Kamboh, “station communication,” pp. 2–7, 2019.

D. Jia and D. Ngoduy, “Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication,” Transp. Res. Part B Methodol., vol. 90, pp. 172–191, 2016, doi: 10.1016/j.trb.2016.03.008.

I. Wahid, A. A. Ikram, M. Ahmad, S. Ali, and A. Ali, “State of the Art Routing Protocols in VANETs: A Review,” Procedia Comput. Sci., vol. 130, pp. 689–694, 2018, doi: 10.1016/j.procs.2018.04.121.

Y. Lou, “A distributed framework for network-wide traffic monitoring and platoon information aggregation using V2V communications,” Transp. Res. Part C Emerg. Technol., vol. 69, pp. 356–374, 2016, doi: 10.1016/j.trc.2016.06.003.

X. Liu, “Congestion control in V2V safety communication: Problem, analysis, approaches,” Electron., vol. 8, no. 5, 2019, doi: 10.3390/electronics8050540.

J. Marchang, B. Sanders, and D. Joy, Adaptive V2V routing with RSUs and gateway support to enhance network performance in VANET, vol. 10866 LNCS. Springer International Publishing, 2018. doi: 10.1007/978-3-030-02931-9_24.

Y. Lu, H. Niu, A. Savvaris, and A. Tsourdos, “Verifying Collision Avoidance Behaviours for Unmanned Surface Vehicles using Probabilistic Model Checking,” IFAC-PapersOnLine, vol. 49, no. 23, pp. 127–132, 2016, doi: 10.1016/j.ifacol.2016.10.332.

K. V. N. Kavitha, A. Bagubali, and L. Shalini, “V2V wireless communication protocol for rear-end collision avoidance on highways with stringent propagation delay,” ARTCom 2009 - Int. Conf. Adv. Recent Technol. Commun. Comput., pp. 661–663, 2009, doi: 10.1109/ARTCom.2009.173.

C. Bergenhem, E. Coelingh, R. Johansson, and A. Tehrani, “V2V Communication Quality: Measurements in a Cooperative Automotive Platooning Application,” SAE Int. J. Passeng. Cars - Electron. Electr. Syst., vol. 7, no. 2, pp. 462–470, 2014, doi: 10.4271/2014-01-0302.

D. Kumar Singh and R. Sobti, “Long-range real-time monitoring strategy for Precision Irrigation in urban and rural farming in society 5.0,” Comput. Ind. Eng., vol. 167, no. February, p. 107997, 2022, doi: 10.1016/j.cie.2022.107997.

J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, “Recent advances in selection hyper-heuristics,” Eur. J. Oper. Res., vol. 285, no. 2, pp. 405–428, 2020, doi: 10.1016/j.ejor.2019.07.073.

A. Aliedani and S. W. Loke, “Cooperative car parking using vehicle-to-vehicle communication: An agent-based analysis,” Comput. Environ. Urban Syst., no. October 2017, p. 101256, 2018, doi:

1016/j.compenvurbsys.2018.06.002.

A. Abunei, C. R. Comsa, C. F. Caruntu, and I. Bogdan, “Redundancy based V2V communication platform for vehicle platooning,” ISSCS 2019 - Int. Symp. Signals, Circuits Syst., pp. 9–12, 2019, doi: 10.1109/ISSCS.2019.8801781.




DOI: https://doi.org/10.31326/jisa.v7i2.2125

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ketut Bayu Yogha Bintoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.