Automatic RoI dan Active Contour untuk Deteksi Penggunaan Helm pada Pengendara Sepeda Motor

chyntia raras ajeng widiawati

Abstract


Based on data from the Central Statistics Agency, motorcycle accidents are the most common accidents and many contribute to the death rate in traffic accidents. Some cases of deaths in motorcycle accidents are caused by riders not wearing helmets. Monitoring via CCTV video has been done but it takes a long time so we need another solution to be more effective. Some techniques have been carried out including detection of the use of helmets on motorcyclists by using digital image processing. Some previous studies on these cases experienced obstacles such as overlapping images in the identification process. This study aims to develop a detection method that focuses on the segmentation stage to produce a better segmentation image. The method used in this study is Automatic RoI and Active Contour at the segmentation stage which is then classified using the Multilayer Perceptron classifier. The results obtained give an accuracy value of 72.97%, a sensitivity of 76.19% and a specificity of 68.75%.


Keywords


Automatic RoI; Active Contour; Segmentation; Detection; Multilayer Perceptron; Helmet

Full Text:

PDF

References


“Jumlah Kecelakaan, Koban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi yang Diderita Tahun 1992-2017,” Badan Pusat Statistik, 2017. [Online]. Available: https://www.bps.go.id/linkTableDinamis/view/id/1134.

D. P. Kesuma, “Polisi Akui Angka Kecelakaan Lalu Lintas Sepanjang 2018 Cenderung Naik,” Jakarta, 2018.

Mufrod, “5 Ribu Pengendara Motor Tewas Tak Gunakan Helm, Masih Mau Nekat?,” Jakarta, 2018.

R. Silva, K. Aires, T. Santos, K. Abdala, R. Veras, and A. Soares, “Automatic detection of motorcyclists without helmet,” 2013 XXXIX Lat. Am. Comput. Conf., pp. 1–7, 2013.

D. R. Kc, A. Chairat, V. Timtong, M. N. Dailey, and M. Ekpanyapong, “Helmet Violation Processing Using Deep Learning,” pp. 3–6, 2018.

H. Wu and J. Zhao, Automated visual helmet identification based on deep convolutional neural networks, vol. 44, no. 2012. Elsevier Masson SAS, 2018.

Y. Kulkarni, S. Bokdhe, A. Kamthe, and A. Patil, “Automatic Number Plate Recognition for Motorcyclists Riding Without Helmet,” Proceeding 2018 IEEE Int. Conf. Curr. Trends Towar. Converging Technol., pp. 1–6, 2018.

Nurpadmi and K. E. Purnama, “Segmentasi tulang pada citra ct menggunakan active contour,” Ind. Electron. Semin., pp. 1–6, 2010.

D. Putra, Pengolahan Citra Digital, 1st ed. Yogyakarta: Penerbit Andi, 2010.

F. T. Anggraeny and M. Widyasri, “Klasifikasi Voting ANN PSO Biclass dengan Seleksi Fitur Gain Ratio,” Smntf-Upn Veteran Jatim, pp. 3–8, 2013.




DOI: https://doi.org/10.31326/jisa.v2i2.490

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 chyntia raras ajeng widiawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.