Optimization of Support Vector Machine Method Using Feature Selection to Improve Classification Results

Saikin Saikin, Sofiansyah Fadli, Maulana Ashari

Abstract


The performance of the organizations or companiesare based on the qualities possessed by their employee. Both of good or bad employee performance will have an impact on productivity and the impact of profits obtained by the company. Support Vector Machine (SVM) is a machine learning method based on statistical learning theory and can solve high non-linearity, regression, etc. In machine learning, the optimization model is a part for improving the accuracy of the model for data learning. Several techniques are used, one of which is feature selection, namely reducing data dimensions so that it can reduce computation in data modeling. This study aims to apply the method of machine learning to the employee data of the Bank Rakyat Indonesia (BRI) company. The method used is SVM method by increasing the accuracy of learning data by using a feature selection technique using a wrapper algorithm. From the results of the classification test, the average accuracy obtained is 72 percent with a precision value of 71 and the recall value is rounded off to 72 percent, with a combination of SVM and cross-validation. Data obtained from Kaggle data, which consists of training data and testing data. each consisting of 30 columns and 22005 rows in the training data and testing data consisting of 29 col-umns and 6000 rows. The results of this study get a classification score of 82 percent. The precision value obtained is rounded off to 82 percent, a recall of 86 percent and an f1-score of 81 percent.

Keywords


K-Fold Algorithm; SVM Method; Classification; Machine Learning

Full Text:

PDF

References


Agustian Noor. (2018). Perbandingan algoritma Support Vector machine biasa dengan support vector mechine berbasis particale swarm optimization untuk prediksi gempa bumi. Jurnal Humaniora dan Teknologi. DOI:10.34128/jht.v4i1.37.

Prasetyo. (2014). Data Mining Mengolah data menjadi informasi. Andi. Yogyakarta

Ultach Enri. (2018). Optimasi Parameter Support Vector Machine Untuk Prediksi Nilai Tukar Rupiah Terhadap Dolar Amerika. Jurnal Gerbang. Vol 8 No 1.

Raymer, M. L. Punch, W. F., Goodman, E. D., Kuhn, L. A., & Jain, A. K. (2000). Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation, 4(2), 164-171.

Jain, A., & Zongker, D. (1997). Feature Selection: Evaluation, Application and Small Sample Performance. IEEE Transactions on Pattern Analysis and Machine Intelligence. 19(2). 153-158.

Maimon, O., & Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook (Second Edition ed.). New York: Springer.

Hairani., Muhammad Innuddin. (2019). Kombinasi Metode Correlated Naive Bayes dan Metode Seleksi Fitur Wrapper untuk Klasifikasi Data Kesehatan. Jurnal Teknik Elektro Vol. 11 No. 2

Rizki Tri Prasetio. (2020). Seleksi Fitur Dan Optmiasi Parameter K-NN Berbasis Algoritma Genitika Pada Dataset Medis. Jurnal Renponsif. Vol. 2. No. 2.

Diani. (2017). Analisis Pengaruh Kernel Support Vector Machine (SVM) pada Klasifikasi Data Microarray untuk Deteksi Kanker, Indonesian Jurnal Of Computing. Bandung. Vol. 2 No. 1. DOI: 10.21108/INDOJC.2017.2.1.169.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques 3rd Edition. USA: Morgan Kaufmann.

Vapnik, V. N. (2002). The Nature of Statistical Learning Theory 2nd Edition. New York: Springer-Verlag

Gunn, S. (1998). Support Vector Machines for Classification and Regression. Southampton: University of Southampton.

J. C. Ang, A. Mirzal, H. Haron, and H. N. A. Hamed, “ Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 13, no. 5, pp. 971–989, 2016, DOI: 10.1109/TCBB.2015.2478454.

E. Hancer, B. Xue, and M. Zhang, “ Differential evolution for filter feature selection based on information theory and feature ranking,” Knowledge-Based Syst., vol. 140, pp. 103–119, 2018, DOI: 10.1016/j.knosys.2017.10.028.

M. Alirezanejad, R. Enayatifar, H. Motameni, and H. Nematzadeh, “Heuristic filter feature selection methods for medical datasets,” Genomics, vol. 112, no. 2, pp. 1173–1181, 2020, DOI: 10.1016/j.ygeno.2019.07.002.

Abdillah, Abdul, Azis., Prianto, Budi. (2019). Pembelajaran Mesin Menggunakan Principal Component Analysis dan Support Vector Machines untuk Mendeteksi Diabetes. J. Matem. Sains. DOI Number: 10.5614/jms.2019.24.1.2.

Buntoro, G.A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. INTEGER: Journal of Information Technology, Vol. 2, Ed. 1. DOI: 10.31284/j.integer.2017.v2i1.95

Hikmawan, S., Pardamean, A., Khasanah, S.N., (2020). Sentimen Analisis Publik Terhadap Joko Widodo Terhadap Wabah Covid-19 Menggunakan Metode Machine Learning. Jurnal Kajian Ilmiah, Vol. 20. Ed. 2. DOI:10.33633/tc.v19i4.4044

Sari, Erna DH., Irhamah. (2019). Analisis Sentimen Nasabah Pada Layanan Perbankan Menggunakan Metode Regresi Logistik Biner, Naïve Bayes Classifier (NBC), dan Support Vector Machine




DOI: https://doi.org/10.31326/jisa.v4i1.881

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Saikin Saikin, Sofiansyah Fadli, Maulana Ashari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.