A Study of V2V Communication on VANET: Characteristic, Challenges and Research Trends

Ketut Bayu Yogha Bintoro

Abstract


Vehicle to Vehicle (V2V) communication is a specific type of communication on Vehicular Ad Hoc Network (VANET)  that attracts the great interest of researchers, industries, and government attention in due to its essential application to improve safety driving purposes for the next generation of vehicles. Our paper is a systematic study of V2V communication in VANET that cover the particular research issue, and trends from the recent works of literature. We begin the article with a brief V2V communication concept and the V2V application to safety purposes and non-safety purposes; then, we analyze several problems of V2V communication for VANET related to safety issues and non-safety issues. Next, we provide the trends of the V2V communication application for VANET. Finally, provide SWOT analysis as a discussion to identify opportunities and challenges of V2V communication for VANET in the future. The paper does not include a technical explanation. Still, the article describes the general perspective of VANET to the reader, especially for the beginner reader, who intends to learn about the topic.


Keywords


V2V communication; VANET; vehicular communication

Full Text:

PDF

References


Li, D., Liu, M., Zhao, F., & Liu, Y. (2019). Challenges and countermeasures of interaction in autonomous vehicles. Science China Information Sciences, 62(5), 3–5. https://doi.org/10.1007/s11432-018-9766-3

Wang, N., Wang, X., Palacharla, P., & Ikeuchi, T. (2018). Cooperative autonomous driving for traffic congestion avoidance through vehicle-to-vehicle communications. IEEE Vehicular Networking Conference, VNC, 2018-Janua, 327–330. https://doi.org/10.1109/VNC.2017.8275620

Wang, Y., Yao, J., & Chen, G. (2018). An evolving super-network model with inter-vehicle communications. Journal of the Franklin Institute. https://doi.org/10.1016/j.jfranklin.2018.07.036

Mchergui, A., Moulahi, T., Alaya, B., & Nasri, S. (2017). A survey and comparative study of QoS aware broadcasting techniques in VANET. Telecommunication Systems, 66(2), 253–281. https://doi.org/10.1007/s11235-017-0280-9

Caballero-gil, C., Caballero-gil, P., & Molina-gil, J. (2015). Self-Organized Clustering Architecture for Vehicular Ad Hoc Networks. 2015. https://doi.org/10.1155/2015/384869

Liang, W., Li, Z., Zhang, H., Sun, Y., & Bie, R. (2014). Vehicular ad hoc networks: Architectures, Research issues, Challenges and trends. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8491, 102–113. https://doi.org/10.1155/2015/745303

Demba, A., & Moller, D. P. F. (2018). Vehicle-to-Vehicle Communication Technology. IEEE International Conference on Electro Information Technology, 2018-May(1), 459–464. https://doi.org/10.1109/EIT.2018.8500189

Özdemir, Ö., Kılıç, İ., Yazıcı, A., & Özkan, K. (2016). A V2V System Module for Inter Vehicle Communication. Applied Mechanics and Materials, 850, 16–22. https://doi.org/10.4028/www.scientific.net/amm.850.16

Shaikh, S. N., & Patil, S. R. (2016). A robust broadcast scheme for vehicle to vehicle communication system. Conference on Advances in Signal Processing, CASP 2016, 301–305. https://doi.org/10.1109/CASP.2016.7746184

Gao, S., Lim, A., & Bevly, D. (2016). An empirical study of DSRC V2V performance in truck platooning scenarios. Digital Communications and Networks, 2(4), 233–244. https://doi.org/10.1016/j.dcan.2016.10.003

Daniel, A., Paul, A., Ahmad, A., & Rho, S. (2016). Cooperative Intelligence of Vehicles for Intelligent Transportation Systems (ITS). Wireless Personal Communications, 87(2), 461–484. https://doi.org/10.1007/s11277-015-3078-7

Moloisane, N. R., Malekian, R., & Capeska Bogatinoska, D. (2017). Wireless machine-to-machine communication for intelligent transportation systems: Internet of vehicles and vehicle to grid. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2017 - Proceedings, 411–415. https://doi.org/10.23919/MIPRO.2017.7973459

Moussaoui, B., Fouchal, H., Ayaida, M., & Mermiz, S. (2016). Unicast routing on VANETs. Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, 8, 1089–1092. https://doi.org/10.15439/2016F262

Outay, F., Bargaoui, H., Chemek, A., Kamoun, F., & Yasar, A. (2019). The covcrav project: Architecture and design of a cooperative v2v crash avoidance system. Procedia Computer Science, 160, 473–478. https://doi.org/10.1016/j.procs.2019.11.062

Ghatwai, N. G., Harpale, V. K., & Kale, M. (2017). Vehicle To vehicle communication for crash avoidance system. Proceedings - 2nd International Conference on Computing, Communication, Control and Automation, ICCUBEA 2016, 1–3. https://doi.org/10.1109/ICCUBEA.2016.7860118

Matthias Schulze, Tapani Mäkinen, Joachim Irion, Maxime Flament, T. K. (2008). Preventive and Active Safety Applications Integrated Project. 198.

Brennand, C. A. R. L., Filho, G. P. R., Maia, G., Cunha, F., Guidoni, D. L., & Villas, L. A. (2019). Towards a Fog-Enabled Intelligent Transportation System to Reduce Traffic Jam. Sensors (Basel, Switzerland), 19(18), 1–30. https://doi.org/10.3390/s19183916

Jia, D., & Ngoduy, D. (2016). Platoon based cooperative driving model with consideration of realistic inter-vehicle communication. Transportation Research Part C: Emerging Technologies, 68, 245–264. https://doi.org/10.1016/j.trc.2016.04.008

Hsu, C., Fikentscher, J., & Kreeb, R. (2017). Development of potential methods for testing congestion control algorithm implemented in vehicle-to-vehicle communications. Traffic Injury Prevention, 18(S1), 51–57.

Desai, P., Loke, S. W., & Desai, A. (2017). Cooperative vehicles for robust traffic congestion reduction: An analysis based on algorithmic, environmental and agent behavioral factors. PLoS ONE, 12(8), 1–20. https://doi.org/10.1371/journal.pone.0182621

Aliedani, A., & Loke, S. W. (2018). Cooperative car parking using vehicle-to-vehicle communication: An agent-based analysis. Computers, Environment and Urban Systems, October 2017, 101256. https://doi.org/10.1016/j.compenvurbsys.2018.06.002

Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2018). Trust model for secure group leader-based communications in VANET. Wireless Networks, 6, 1–23. https://doi.org/10.1007/s11276-018-1756-6

Bian, Y., Zheng, Y., Ren, W., Li, S. E., Wang, J., & Li, K. (2019). Reducing time headway for platooning of connected vehicles via V2V communication. Transportation Research Part C: Emerging Technologies, 102(March), 87–105. https://doi.org/10.1016/j.trc.2019.03.002

Liu, Z. Q., Zhang, T., & Wang, Y. F. (2019). Research on Local Dynamic Path Planning Method for Intelligent Vehicle Lane-Changing. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/4762658

Cui, Y., Wu, J., Xu, H., & Wang, A. (2020). Lane change identification and prediction with roadside LiDAR data. Optics and Laser Technology, 123(September 2019), 105934. https://doi.org/10.1016/j.optlastec.2019.105934

Peng, T., Su, L., Zhang, R., Guan, Z., Zhao, H., Qiu, Z., Zong, C., & Xu, H. (2020). A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles. Expert Systems with Applications, 141. https://doi.org/10.1016/j.eswa.2019.112953

Eze, E. C., Zhang, S. J., Liu, E. J., & Eze, J. C. (2016). Advances in vehicular ad-hoc networks (VANETs): Challenges and road-map for future development. International Journal of Automation and Computing, 13(1), 1–18. https://doi.org/10.1007/s11633-015-0913-y

Tilahun, S. L., & Tawhid, M. A. (2018). Swarm hyperheuristic framework. Journal of Heuristics, 25(4), 809–836. https://doi.org/10.1007/s10732-018-9397-6

Chiu, K. L., & Hwang, R. H. (2012). Communication framework for vehicle ad hoc network on freeways. Telecommunication Systems, 50(4), 243–256. https://doi.org/10.1007/s11235-010-9401-4

Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241. https://doi.org/10.1007/s11235-010-9400-5

Cheng, J., Cheng, J., Zhou, M., Liu, F., Gao, S., & Liu, C. (2015). Routing in internet of vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2339–2352. https://doi.org/10.1109/TITS.2015.2423667

Ferreiro-Lage, J. A., Gestoso, C. P., Rubiños, O., & Agelet, F. A. (2009). Analysis of unicast routing protocols for VANETs. Proceedings of the 5th International Conference on Networking and Services, ICNS 2009, 518–521. https://doi.org/10.1109/ICNS.2009.96

Bilal, S. M., Bernardos, C. J., & Guerrero, C. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685–697. https://doi.org/10.1016/j.jnca.2012.12.023

Saleh, A. I., Gamel, S. A., & Abo-Al-Ez, K. M. (2017). A Reliable Routing Protocol for Vehicular Ad hoc Networks. Computers and Electrical Engineering, 64, 473–495. https://doi.org/10.1016/j.compeleceng.2016.11.011

Zhou, Q., Fan, Y., & Wei, C. (2012). Heuristic routing protocol research on opportunistic networks. Proceedings of the 14th IEEE International Conference on High Performance Computing and Communications, HPCC-2012 - 9th IEEE International Conference on Embedded Software and Systems, ICESS-2012, 1704–1707. https://doi.org/10.1109/HPCC.2012.254

Liu, Z. Y., Zhou, J. G., Zhao, T., & Yan, W. (2009). An opportunistic approach to enhance the geographical source routing protocol for vehicular ad hoc networks. IEEE Vehicular Technology Conference, 1–5. https://doi.org/10.1109/VETECF.2009.5378797

Suhendra, T., & Priyambodo, T. K. (2017). Analisis Perbandingan Algoritma Perencanaan Jalur Robot Bergerak Pada Lingkungan Dinamis. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 11(1), 21. https://doi.org/10.22146/ijccs.15743

Hu, L., Ding, Z., & Shi, H. (2012). An improved GPSR routing strategy in VANET. 2012 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2012, 1–4. https://doi.org/10.1109/WiCOM.2012.6478416

Silva, R., Lopes, H. S., & Godoy, W. (2013). A heuristic algorithm based on ant colony optimization for multi-objective routing in vehicle Ad Hoc networks. Proceedings - 1st BRICS Countries Congress on Computational Intelligence, BRICS-CCI 2013, 435–440. https://doi.org/10.1109/BRICS-CCI-CBIC.2013.78

Rajesh Kumar, M., & Routray, S. K. (2017). Ant Colony based Dynamic source routing for VANET. Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology, ICATccT 2016, 279–282. https://doi.org/10.1109/ICATCCT.2016.7912008

Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Information Sciences, 277, 680–693. https://doi.org/10.1016/j.ins.2014.02.155

Abba, S., & Lee, J. A. (2017). Bio-inspired self-aware fault-tolerant routing protocol for network-on-chip architectures using Particle Swarm Optimization. Microprocessors and Microsystems, 51, 1339–1351. https://doi.org/10.1016/j.micpro.2017.04.003

Okulewicz, M., & Mańdziuk, J. (2017). The impact of particular components of the PSO-based algorithm solving the Dynamic Vehicle Routing Problem. Applied Soft Computing Journal, 58, 586–604. https://doi.org/10.1016/j.asoc.2017.04.070

Singh, P. K., Nandi, S. K., & Nandi, S. (2019). A tutorial survey on vehicular communication state of the art, and future research directions. Vehicular Communications, 18, 100164. https://doi.org/10.1016/j.vehcom.2019.100164

Balzano, W., Murano, A., & Vitale, F. (2016). V2V-EN - Vehicle-2-Vehicle Elastic Network. Procedia Computer Science, 58, 497–502. https://doi.org/10.1016/j.procs.2016.09.084

Cherkaoui, B., Beni-Hssane, A., Fissaoui, M. El, & Erritali, M. (2019). Road traffic congestion detection in VANET networks. Procedia Computer Science, 151, 1158–1163. https://doi.org/10.1016/j.procs.2019.04.165

Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31. https://doi.org/10.1016/j.vehcom.2018.01.006

Darwish, T., Abu Bakar, K., & Hashim, A. (2017). Green geographical routing in vehicular ad hoc networks: Advances and challenges. Computers and Electrical Engineering, 64, 436–449. https://doi.org/10.1016/j.compeleceng.2016.09.030

Li, D., Deng, L., Cai, Z., Franks, B., & Yao, X. (2018). Intelligent Transportation System in Macao Based on Deep Self-Coding Learning. IEEE Transactions on Industrial Informatics, 14(7), 3253–3260. https://doi.org/10.1109/TII.2018.2810291

Benza, M., Bersani, C., D’Incà, M., Roncoli, C., Sacile, R., Trotta, A., Pizzorni, D., Briata, S., & Ridolfi, R. (2012). Intelligent Transport Systems (ITS) applications on dangerous good transport on road in Italy. Proceedings - 2012 7th International Conference on System of Systems Engineering, SoSE 2012, 223–228. https://doi.org/10.1109/SYSoSE.2012.6384180

Malygin, I., Komashinsky, V., & Tsyganov, V. V. (2017). International experience and multimodal intelligent transportation system of Russia. Proceedings of 2017 10th International Conference Management of Large-Scale System Development, MLSD 2017, 1–5. https://doi.org/10.1109/MLSD.2017.8109658

Seliverstov, Y. A., Malygin, I. G., Komashinskiy, V. I., Tarantsev, A. A., Shatalova, N. V., & Petrova, V. A. (2017). The St. Petersburg transport system simulation before opening new subway stations. Proceedings of 2017 20th IEEE International Conference on Soft Computing and Measurements, SCM 2017, 284–287. https://doi.org/10.1109/SCM.2017.7970562

Lin, L. T., Huang, H. J., Lin, J. M., & Young, F. F. (2009). A new intelligent traffic control system for Taiwan. 2009 9th International Conference on Intelligent Transport Systems Telecommunications, ITST 2009, 138–142. https://doi.org/10.1109/ITST.2009.5399369

Poolsawat, A., Ayutaya, K. S. N., & Pattara-Atikom, W. (2009). Impact of intelligent traffic information system on congestion saving in Bangkok. 2009 9th International Conference on Intelligent Transport Systems Telecommunications, ITST 2009, 153–156. https://doi.org/10.1109/ITST.2009.5399364

Muchaendepi, W., Mbohwa, C., & Kanyepe, J. (2019). Intelligent Transport Systems and its Impact on Performance of Road Freight Transport in Zimbabwe. IEEE International Conference on Industrial Engineering and Engineering Management, 2019-December, 80–83. https://doi.org/10.1109/IEEM.2018.8607409

Nkoro, A. B., & Vershinin, Y. A. (2014). Current and future trends in applications of Intelligent Transport Systems on cars and infrastructure. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, 514–519. https://doi.org/10.1109/ITSC.2014.6957741

Zhu, T., & Liu, Z. (2015). Intelligent Transport Systems in China: Past, Present and Future. Proceedings - 2015 7th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2015, 581–584. https://doi.org/10.1109/ICMTMA.2015.146

Zhu, L., Yu, F. R., Wang, Y., Ning, B., & Tang, T. (2019). Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383–398. https://doi.org/10.1109/TITS.2018.2815678

Vidya, V. M., & Deepa, N. (2019). Big data analytics in intelligent transportation systems using hadoop. International Journal of Recent Technology and Engineering, 7(6), 75–80.

Wu, F. J., Zhang, X., & Lim, H. B. (2014). A cooperative sensing and mining system for transportation activity survey. In IEEE Wireless Communications and Networking Conference, WCNC (pp. 3284–3289). https://doi.org/10.1109/WCNC.2014.6953075

Chen, B., & Cheng, H. H. (2010). A review of the applications of agent technology in traffic and transportation systems. IEEE Transactions on Intelligent Transportation Systems, 11(2), 485–497. https://doi.org/10.1109/TITS.2010.2048313

Veres, M., & Moussa, M. (2019). Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends. IEEE Transactions on Intelligent Transportation Systems, 1–17. https://doi.org/10.1109/tits.2019.2929020

Zhang, J., A, A, A, A, A, A, A, & A. (2011). Data-driven intelligent transportation systems: A survey. In IEEE Transactions on Intelligent Transportation Systems (Vol. 12, Issue 4, pp. 1624–1639).

Wang, X., & Yan, S. (2011). Design and implementation of intelligent public transport system based on GIS. 2011 International Conference on Electric Information and Control Engineering, ICEICE 2011 - Proceedings, 4868–4871. https://doi.org/10.1109/ICEICE.2011.5777492

Anand, B., Barsaiyan, V., Senapati, M., & Rajalakshmi, P. (2019). Real time LiDAR point cloud compression and transmission for intelligent transportation system. IEEE Vehicular Technology Conference, 2019-April, 1–5. https://doi.org/10.1109/VTCSpring.2019.8746417

Eckelmann, S., Trautmann, T., Ußler, H., Reichelt, B., & Michler, O. (2017). V2V-Communication, LiDAR System and Positioning Sensors for Future Fusion Algorithms in Connected Vehicles. Transportation Research Procedia, 27, 69–76. https://doi.org/10.1016/j.trpro.2017.12.032

Li, W., Ma, X., Wu, J., Trivedi, K. S., Huang, X. L., & Liu, Q. (2017). Analytical Model and Performance Evaluation of Long-Term Evolution for Vehicle Safety Services. IEEE Transactions on Vehicular Technology, 66(3), 1926–1939. https://doi.org/10.1109/TVT.2016.2580571

Li, J., Zhang, Y., Shi, M., Liu, Q., & Chen, Y. (2020). Collision avoidance strategy supported by LTE-V-based vehicle automation and communication systems for car following. Tsinghua Science and Technology, 25(1), 127–139. https://doi.org/10.26599/TST.2018.9010143

Correa, A., Boquet, G., Morell, A., & Vicario, J. L. (2017). Autonomous car parking system through a cooperative vehicular positioning network. Sensors (Switzerland), 17(4). https://doi.org/10.3390/s17040848

Sakurada, L., Barbosa, J., Leitao, P., Alves, G., Borges, A. P., & Botelho, P. (2019). Development of Agent-Based CPS for Smart Parking Systems. IECON Proceedings (Industrial Electronics Conference), 2019-October, 2964–2969. https://doi.org/10.1109/IECON.2019.8926653

Shi, Y., Pan, Y., Sun, X., Xie, R., Chen, W., & Shen, S. (2018). Collaborative Planning of Parking Spaces and AGVs Path for Smart Indoor Parking System. Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design, CSCWD 2018, 496–500. https://doi.org/10.1109/CSCWD.2018.8465323

Tilahun, S. L., & Di Marzo Serugendo, G. (2017). Cooperative multiagent system for parking availability prediction based on time varying dynamic markov chains. Journal of Advanced Transportation, 2017. https://doi.org/10.1155/2017/1760842

Abunei, A., Comsa, C. R., Caruntu, C. F., & Bogdan, I. (2019). Redundancy based V2V communication platform for vehicle platooning. ISSCS 2019 - International Symposium on Signals, Circuits and Systems, 9–12. https://doi.org/10.1109/ISSCS.2019.8801781

Stüdli, S., Seron, M. M., & Middleton, R. H. (2017). Vehicular Platoons in cyclic interconnections with constant inter-vehicle spacing. IFAC-PapersOnLine, 50(1), 2511–2516. https://doi.org/10.1016/j.ifacol.2017.08.449

Kim, J., Han, Y., & Kim, I. (2019). Efficient Groupcast Schemes for Vehicle Platooning in V2V Network. IEEE Access, 7, 171333–171345. https://doi.org/10.1109/ACCESS.2019.2955791

Tripathy, R., Harmalkar, J., & Kumar, A. (2019). A functionally safe dual-bus platoon architecture for future smart cities. Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, 2019-April(Icoei), 682–686. https://doi.org/10.1109/icoei.2019.8862618

Bhoopalam, A. K., Agatz, N., & Zuidwijk, R. (2018). Planning of truck platoons: A literature review and directions for future research. Transportation Research Part B: Methodological, 107, 212–228. https://doi.org/10.1016/j.trb.2017.10.016

Larson, J., Liang, K. Y., & Johansson, K. H. (2015). A distributed framework for coordinated heavy-duty vehicle platooning. IEEE Transactions on Intelligent Transportation Systems, 16(1), 419–429. https://doi.org/10.1109/TITS.2014.2320133

Kokkinogenis, Z., Teixeira, M., D’Orey, P. M., & Rossetti, R. J. F. (2019). Tactical level decision-making for platoons of autonomous vehicles using auction mechanisms. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 1632–1638. https://doi.org/10.1109/IVS.2019.8814122

Maiti, S., Winter, S., & Kulik, L. (2017). A conceptualization of vehicle platoons and platoon operations. Transportation Research Part C: Emerging Technologies, 80, 1–19. https://doi.org/10.1016/j.trc.2017.04.005

Dang, R., Ding, J., Su, B., Yao, Q., Tian, Y., & Li, K. (2014). A lane change warning system based on V2V communication. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, 1923–1928. https://doi.org/10.1109/ITSC.2014.6957987

Wang, L., Iida, R. F., & Wyglinski, A. M. (2018). Coordinated Lane Changing Using V2V Communications. IEEE Vehicular Technology Conference, 2018-Augus, 1–5. https://doi.org/10.1109/VTCFall.2018.8690643

Liu, X., Liang, J., & Xu, B. (2019). A Deep Learning Method for Lane Changing Situation Assessment and Decision Making. IEEE Access, 7, 133749–133759. https://doi.org/10.1109/ACCESS.2019.2940853

Sakr, A. H., Bansal, G., Vladimerou, V., & Johnson, M. (2018). Lane Change Detection Using V2V Safety Messages. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-Novem, 3967–3973. https://doi.org/10.1109/ITSC.2018.8569690




DOI: https://doi.org/10.31326/jisa.v4i1.895

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ketut Bayu Yogha Bintoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.