Features Selection based on Enhanced KNN to Predict Raw Material Needs on PT. SANM

Siti Aisyah Naili Mutia, Tjong Wan Sen

Abstract


Raw material inventory must be able to meet production needs. So it is necessary to plan / predict raw material needs in the following month to determine the raw material inventory. Currently PT. SANM uses a manual counting method, the expenditure of raw materials for six months, then deducts the current raw material inventory. As a result, there are raw materials that are over order or lacking, which causes production to be constrained. The manual calculation method is not effective enough to meet the raw material inventory. In this research, the researcher proposes an algorithm which is contained in Data Mining, that is Enhanced KNN using GWO to predict raw material needs. Because GWO and Enhanced KNN algorithms give the results are easy to understand, have good accuracy compared to other machine learning methods, can cover the trapped problem from KNN traditional and capable of improving the accuracy using feature selection method. The method used in this study is to compare Enhanced KNN with and without GWO that gives a significant increase in the accuracy value by 16.5%, from 44.6% to 61.1%.

Keywords


Data Mining, Classification, Enhanced K-Nearest Neighbor, Feature Selection

Full Text:

PDF

References


R. Arian, A. Hariri, A. Mehridehnavi, A. Fassihi, and F. Ghasemi, “Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm,” Comput. Biol. Chem., vol. 86, no. April, p. 107269, 2020, doi: 10.1016/j.compbiolchem.2020.107269.

F. Borghesan, M. Chioua, and N. F. Thornhill, “Forecasting of process disturbances using k-nearest neighbours, with an application in process control,” Comput. Chem. Eng., vol. 128, no. 675215, pp. 188–200, 2019, doi: 10.1016/j.compchemeng.2019.05.009.

D. A. Adeniyi, Z. Wei, and Y. Yongquan, “Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method,” Appl. Comput. Informatics, vol. 12, no. 1, pp. 90–108, 2016, doi: 10.1016/j.aci.2014.10.001.

W. M. Shaban, A. H. Rabie, A. I. Saleh, and M. A. Abo-Elsoud, “A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier,” Knowledge-Based Syst., vol. 205, p. 106270, 2020, doi: 10.1016/j.knosys.2020.106270.

M. A. Oktaviani, R. S. Wibowo, and N. K. Aryani, “Aliran Daya Optimal dengan Efek Katup Menggunakan Grey Wolf Optimization,” J. Tek. ITS, vol. 7, no. 2, 2019, doi: 10.12962/j23373539.v7i2.30906.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, “An improved grey wolf optimizer for solving engineering problems,” Expert Syst. Appl., vol. 166, p. 113917, 2021, doi: 10.1016/j.eswa.2020.113917.

J. Gholami, F. Pourpanah, and X. Wang, “Feature selection based on improved binary global harmony search for data classification,” Appl. Soft Comput. J., vol. 93, p. 106402, 2020, doi: 10.1016/j.asoc.2020.106402.

R. D. Liklikwatil, E. Noersasongko, and C. Supriyanto, “Optimasi K-Nearest Neighbor Dengan Particle Swarm Optimization Untuk Memprediksi Harga Komoditi Karet,” e-Jurnal JUSITI (Jurnal Sist. Inf. dan Teknol. Informasi), vol. 7–2, no. 2, pp. 172–182, 2018, doi: 10.36774/jusiti.v7i2.252.

N. Bharanidharan and H. Rajaguru, “Classification of dementia using harmony search optimization technique,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2018-Decem, pp. 1–5, 2019, doi: 10.1109/R10-HTC.2018.8629846.

L. S. Han and J. A. N. Nordin, “Predicting the stock price trends using a K-nearest neighbors-probabilistic model,” J. Theor. Appl. Inf. Technol., vol. 96, no. 18, pp. 6245–6255, 2018.

M. E. Lasulika, “Prediksi Harga Komoditi Jagung Menggunakan K-Nn Dan Particle Swarm Optimazation Sebagai Fitur Seleksi,” Ilk. J. Ilm., vol. 9, no. 3, pp. 233–238, 2017, doi: 10.33096/ilkom.v9i3.148.233-238.

B. Song, S. Tan, H. Shi, and B. Zhao, “Fault detection and diagnosis via standardized k nearest neighbor for multimode process,” J. Taiwan Inst. Chem. Eng., vol. 106, no. xxxx, pp. 1–8, 2020, doi: 10.1016/j.jtice.2019.09.017.

A. Sharma, P. Madhushri, V. Kushvaha, and A. Kumar, “Prediction of the Fracture Toughness of Silicafilled Epoxy Composites using K-Nearest Neighbor (KNN) Method,” 2020 Int. Conf. Comput. Perform. Eval. ComPE 2020, pp. 194–198, 2020, doi: 10.1109/ComPE49325.2020.9200093.

M. Bramer, Principles of Data Mining. Springer London, 2007.




DOI: https://doi.org/10.31326/jisa.v4i2.912

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Siti Aisyah Naili Mutia,Tjong Wan Sen

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: Indonesia & English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.