The Prediction of Gold Price Movement by Comparing Naive Bayes, Support Vector Machine, and K-NN

Yahya Suryana, Tjong Wan Sen

Abstract


Gold is a yellow precious metal that can be forged so it is easy to form with various forms of jewelry such as pendants, earrings, rings, bracelets and others, gold has a high value. Gold itself is an exchange rate used in ancient times before the existence of money as it is today. Gold also can be used as an investment that is profitable for the investor and it has less risks. Investment is a form of fund management to give benefit by putting fund in allocation that is predicted will give additional benetifs. Prediction of gold price movements or predictions of gold price in gold stock investment, this research uses 3 (three) algorithms that will be implemented in analysis and increase accuracy, in the discussion or research that was made using the Naïve Bayes algorithm, Support Vector Machine and K-Nearest Neighbor, the dataset is obtained from the website, namely www.finance.yahoo.com the data was then tested using Rapid miner tools so that the average value of the Support Vector Machine algorithm with an accuracy rate of 57.59%, precision 58 ,73% and recall 51,78%. The next is the Naïve Bayes algorithm so that it is known to have an accuracy rate of 55.59%, precision 54.55% and recall 51.70%. Based on the comparison of the three algorithms, it is known that the one with the best accuracy, precision, and recall is the K-NN algorithm with 61.90% accuracy, 60.98% precision, and 60.35% recall. Furthermore, the results of testing the K-Nearst Neighbor algorithm have good results compared to the 3 (three) other algorithm tests and the Naïve Bayes algorithm testing has a low level of accuracy, namely 55.59%, precision 54.55% and recall 51.70%. The research uses 3 algorithms, namely naive bayes, K-nearst neighbor and Support Vector Machine, because the three algorithms are well-established algorithms to be applied to research, especially in time series gold price research and are very good, especially for classification


Keywords


Data Mining; Naïve Bayes; KNN; Support Vector Machine

Full Text:

PDF

References


Guntur, M., Santony, J., & Yuhandri, Y. (2018). Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2(1), 354-360

Mahena, Y., Rusli, M., & Winarso, E. (2015). Prediksi Harga Emas Dunia Sebagai Pendukung Keputusan Investasi Saham Emas Menggunakan Teknik Data Mining. Kalbiscentia J. Sains dan Teknol, 2(1), 36-51.

Saputro, N. D. (2015). Penerapan Algoritma Support Vector Machine untuk Prediksi Harga Emas. Jurnal Informatika Upgris, 1(1 Juni).

Witjaksono, A. A. (2010). Analisis Pengaruh Tingkat Suku Bunga SBI, Harga Minyak Dunia, Harga Emas Dunia, Kurs Rupiah, Indeks Nikkei 225, dan Indeks Dow Jones terhadap IHSG (studi kasus pada IHSG di BEI selama periode 2000-2009) (Doctoral dissertation, UNIVERSITAS DIPONEGORO)

Budiyono, E. P., Nerfita Nikentari, S. T., Sallu, S., & Kom, S. ANALISA KLASIFIKASI KADAR KARAT EMAS MENGGUNAKAN METODE K-NEAREST NEIGHBOURS (KNN).

Hidayat, R. N. (2013). Implementasi Jaringan Syaraf Tiruan Perambatan Balik untuk Memprediksi Harga Logam Mulia Emas Menggunakan Algoritma Lavenberg Marquardt (Doctoral dissertation, Diponegoro University).

Fajrul Falah (2015). Rancang bangun aplikasi prediksi pergerakan harga emas logam mulia dengan menggunakan metode Backpropagation

Sari, Y. (2017). Prediksi Harga Emas Menggunakan Metode Neural Network backpropagation Algoritma Conjugate Gradient. Jurnal Eltikom, 1, 2

Faustina, R. S., Agoestanto, A., & Hendikawati, P. (2017). Model Hybrid ARIMA-GARCH Untuk Estimasi Volatilitas Harga Emas Menggunakan Software R. UNNES Journal of Mathematics, 6(1), 11-24

Zhu, Y., & Zhang, C. (2018). Gold price prediction based on pca-ga-bp neural network. Journal of Computer and Communications, 6(7), 22-33.

Azam, D. F., Ratnawati, D. E., & Adikara, P. P. (2018). Prediksi Harga Emas Batang Menggunakan Feed Forward Neural Network Dengan Algoritme Genetika. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X

Hadavandi, E., Shavandi, H., & Ghanbari, A. (2010, August). A genetic fuzzy expert system for stock price forecasting. In 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (Vol. 1, pp. 41-44). IEEE.

Rahmawati, N. E. (2012). Prediksi Data Time Series Menggunakan Fuzzy Inference System dan Particle Swarm Optimization (Studi Kasus: Prediksi Harga Emas)

Rusbariand, S. P., Masodah, R., & Herawati, S. (2012). Analisis pengaruh tingkat inflasi, harga minyak dunia, harga emas dunia, dan kurs rupiah terhadap pergerakan jakarta islamic index di bursa efek indonesia. In Prosiding Seminar Nasional (Vol. 1, pp. 724-740).

SYARAT-SYARAT, U. M. S., SATU, M. G. S. S., & ADIB, A. M. (2009). Pengaruh Inflasi, Suku Bunga Domestik, Suku Bunga Luar Negeri dan Kurs Terhadap Indeks Harga Saham (Studi pada JII dan IHSG tahun 2005-2007).

Sodiq, A. (2016). Ka jian Historis Tentang Dinar dan MaMata UaUang Berstandar Emas. IQTISHADIA, 8(2).

Iman, N. (2009). Investasi Emas. Jakarta: Daras Books.

Indriasari, T. (2011). Pengaruh harga minyak dunia, nilai tukar rupiah dan tingkat suku bunga SBI terhadap Jakarta Islamic Index (JII). Pengaruh harga minyak dunia, nilai tukar rupiah dan tingkat suku bunga SBI terhadap Jakarta Islamic Index (JII)/Titik Indriasari

Sidarta, W. (2010). Pengaruh gejolak harga minyak mentah terhadap IHSG

Muhammad Wildan, M. W. (2016). PRODUK MURABA> HA> H LOGAM INVESTASI ABADI DI PEGADAIAN SYARIAH PERSPEKTIF HUKUM ISLAM (Studi Kasus di PT. Pegadaian Syariah Cabang Purwokerto) (Doctoral dissertation, IAIN PURWOKERTO)

Witjaksono, A. A. (2010). Analisis Pengaruh Tingkat Suku Bunga SBI, Harga Minyak Dunia, Harga Emas Dunia, Kurs Rupiah, Indeks Nikkei 225, dan Indeks Dow Jones terhadap IHSG (studi kasus pada IHSG di BEI selama periode 2000-2009) (Doctoral dissertation, UNIVERSITAS DIPONEGORO)

Christina, C. (2012). Prediksi Harga Emas Menggunakan Metode Neuro-Fuzzy Tipe 2. Telkom University, Bandung




DOI: https://doi.org/10.31326/jisa.v4i2.922

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 yahya suryana, Tjong Wan Sen

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.