Comparative Analysis of Machine Learning Methods in Predicting Diabetes Risk Based on Genetic Data
Abstract
Type 2 Diabetes Mellitus (T2DM) is a global chronic disease caused by the interaction of genetic and environmental factors. The use of genetic data offers great potential for early detection and personalized intervention. However, the complex analysis of genetic data requires sophisticated approaches like machine learning. This study aims to compare the performance of three machine learning algorithms Logistic Regression, Random Forest, and K-Nearest Neighbors (KNN) in predicting T2DM risk based on genetic data. By using a Systematic Literature Review of studies published between 2019 and 2024, the accuracy data from each algorithm was compared. The analysis results show that Random Forest has the best performance with an accuracy of 99.3%. This algorithm excels due to its ability to handle high-dimensional datasets and reduce overfitting. In comparison, KNN achieved an accuracy of 87% and Logistic Regression 82%. These findings support the integration of machine learning into early detection systems and more precise and efficient clinical decision-making for T2DM management.
Keywords
Full Text:
PDFReferences
Hovi, H. S. W., Id Hadiana, A., & Rakhmat Umbara, F. (2023). Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM). Informatics and Digital Expert (INDEX), 4(1), 40–45, doi: 10.36423/index.v4i1.895
Widiasari, K. R., Made, I., Wijaya, K., & Suputra, P. A. (2021). Diabetes Melitus Tipe 2: Faktor Risiko, Diagnosis, dan Tatalaksana. In Ganesha Medicina Journal (Vol. 1), doi: 10.23887/gm.v1i2.40006
Fatmona, F. A., Permana, D. R., & Sakurawati, A. (2023). Gambaran Tingkat Pengetahuan Masyarakat tentang Pencegahan Diabetes Melitus Tipe 2 di Puskesmas Perawatan Siko. MAHESA: Malahayati Health Student Journal, 3(12), doi: 10.33024/mahesa.v3i12.12581
Mulya Harahap, Raja & Rostini, Tiene & Suraya, Nida. (2024). Pemeriksaan Laboratorium pada Resistansi Insulin. Action Research Literate. 8. 3625-3632. 4 doi: 10.46799/arl.v8i12.2569
Hidayat, R., Sy, YS, Sujana, T., Husnah, M., Saputra, HT, & Okmayura, F. (2024). Implementasi Machine Learning Untuk Prediksi Penyakit Jantung Menggunakan Algoritma Support Vector Machine. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer , 5 (2), 161-168, doi:10.37148/bios.v5i2.152
Wardhana, R. G., Wang, G., & Sibuea, F. (2023). Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit di Indonesia. Journal of Information System Management (JOISM), 5(1). doi: 10.24076/joism.2023v5i1.1136
Siswaja, H. D., & Ramdhani, Y. (2024). Pendekatan Algoritma Neural Network dan Genetic Algorithm Untuk Prediksi Penyakit Ginjal Kronis.. Jurnal Responsif: Riset Sains dan Informatika, 6(2), 232-239, doi: 10.51977/jti.v6i2.1778
Ardika, O. B., Larasati, T. A., Suharmanto, & Kurniati, I. (2024). Impaired Insulin Secretion and Sensitivity in Adolescents with Family History of Type 2 Diabetes Mellitus. Medical Profession Journal of Lampung, 14(1). PDF: https://journalofmedula.com/index.php/medula/article/download/943/744/5640
Tursinawati, Y., Hakim, R. F., Rohmani, A., Kartikadewi, A., & Sandra, F. (2020). CAPN10 SNP-19 is Associated with Susceptibility of Type 2 Diabetes Mellitus: A Javanese Case-control Study. The Indonesian Biomedical Journal, 12(2), doi: 10.18585/inabj.v12i2.984
Angria, N. A. (2024). Polimorfisme Gen VDR Fok1 Pada Penderita Diabetes Melitus Menggunakan PCR-RFLP. Journal of Nursing and Health, 9(2), 259–267, doi: 10.52488/jnh.v9i2.362
Silalahi, A. P., Simanullang, H. G., & Hutapea, M. I. (2023). Supervised Learning Metode K-Nearest Neighbor Untuk Prediksi Diabetes Pada Wanita. METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, 7(1), 144–149, doi: 10.46880/jmika.Vol7No1.pp144-149
Olina, Y. B., Ernawati, E., Aisah, S., Al Jihad, M. N., Setyawati, D., Baidhowy, A. S., & Arifianto, N. (2024). Meningkatkan Kesadaran Hidup Sehat Melalui Skrining Deteksi Dini Penyakit Tidak Menular di Lingkungan Universitas Muhammadiyah Semarang. SALUTA: Jurnal Pengabdian Kepada Masyarakat, 4(1), doi: 10.26714/sjpkm.v4i1.16404
Maliangkay, K. S., Rahma, U., Putri, S., & Istanti, N. D. (2023). Analisis Peran Promosi Kesehatan Dalam Mendukung Keberhasilan Program Pencegahan Penyakit Tidak Menular Di Indonesia. Jurnal Medika Nusantara, 1(2), 108–122, doi: 10.59680/medika.v1i2.284
Rafiq, M., Rahmadani, A. A., Putri, A. A., Happy, D. M., Julia, J., Dala, M. A. D., Angka, M. T., & Wasono, W. (2023). Analisis Regresi Logistik Biner Untuk Memprediksi Faktor-Faktor Internal Yang Memengaruhi Keharmonisan Rumah Tangga Menurut Provinsi Di Indonesia Pada Tahun 2021. Prosiding Seminar Nasional Matematika dan Statistika, 3(1).
Suhendra, M. A., Ispriyanti, D., & Sudarno, S. (2020). Ketepatan Klasifikasi Pemberian Kartu Keluarga Sejahtera di Kota Semarang Menggunakan Metode Regresi Logistik Biner dan Metode Chaid. Jurnal Gaussian, 9(1), 64–74, doi: 10.14710/j.gauss.v9i1.27524
Susanto, T., Rahmaniar, F., Lestari, D. W., & Abdullah, K. (2020). Thermal aging and chemical resistance evaluation of carbon black filled natural rubber blending: effect of the composition of acrylo nitrile and styrene butadiene rubber. IOP Conference Series: Materials Science and Engineering, 980, 012002, doi: 10.1088/1757-899X/980/1/012002
Salsabil, M., Azizah, N. L., & Eviyanti, A. (2024). Implementasi Data Mining Dalam Melakukan Prediksi Penyakit Diabetes Menggunakan Metode Random Forest Dan Xgboost. Jurnal Ilmiah Komputasi, 23(1), 51–58, doi: 10.32409/jikstik.23.1.3507
Deng, S., Wang, L., Guan, S., Li, M., & Wang, L. (2023). Non-parametric Nearest Neighbor Classification Based on Global Variance Difference. International Journal of Computational Intelligence Systems, 16(1), 26, doi: 10.1007/s44196-023-00200-1
Triandini, E., Jayanatha, S., Indrawan, A., Putra, G. W., & Iswara, B. (2019). Metode Systematic Literature Review untuk Identifikasi Platform dan Metode Pengembangan Sistem Informasi di Indonesia. Indonesian Journal of Information Systems, 1(2), 63–77, doi: 10.24002/ijis.v1i2.1916
Simamora, S. C., Gaffar, V., & Arief, M. (2024). Systematic Literatur Review Dengan Metode Prisma: Dampak Teknologi Blockchain Terhadap Periklanan Digital. JURNAL ILMIAH M-PROGRESS, 14(1), 1–11, doi: 10.35968/m-pu.v14i1.1182
Kolaski, K., Logan, L. R., & Ioannidis, J. P. A. (2023). Guidance to best tools and practices for systematic reviews. Systematic Reviews, 12(1), 96, doi: 10.1186/s13643-023-02255-9
Klopfenstein, D. V., & Dampier, W. (2021). Commentary to Gusenbauer and Haddaway 2020: Evaluating retrieval qualities of Google Scholar and PubMed. Research Synthesis Methods, 12(2), 126–135, 10.1002/jrsm.1456
Khanam, J. J., & Foo, S. Y. (2021). A comparison of machine learning algorithms for diabetes prediction. ICT Express, 7(4), 432–439, doi: 10.1016/j.icte.2021.02.004
Sriyanto, & Supriyatna, A. R. (2023). Prediksi Penyakit Diabetes Menggunakan Algoritma Random Forest. TEKNIKA, 8051410, doi: 10.5281/zenodo.8051410
Buani, D. C. P. (2024). Deteksi Dini Penyakit Diabetes dengan Menggunakan Algoritma Random Forest. EVOLUSI: Jurnal Sains dan Manajemen, 12(1), 1–8, doi: 10.31294/evolusi.v12i1.21005
Erlin, E., Marlim, Y. N., Junadhi, J., Suryati, L., & Agustina, N. (2022). Early Detection of Diabetes Using Machine Learning with Logistic Regression Algorithm. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 11(2), 88–96, doi: 10.22146/jnteti.v11i2.3586
DOI: https://doi.org/10.31326/jisa.v8i2.2486
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sekar Ayu Wijaya Kusumaningrum, Oleh Soleh, Muhamad Yusup

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JOURNAL IDENTITY
Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December
Language: English
APC: The Journal Charges Fees for Publishing
Indexing: EBSCO , DOAJ, Google Scholar, Arsip Relawan Jurnal Indonesia, Directory of Research Journals Indexing, Index Copernicus International, PKP Index, Science and Technology Index (SINTA, S4) , Garuda Index
OAI address: http://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contact: jisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi
In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal Indonesia, Jurnal Teknologi dan Sistem Komputer (JTSiskom)
JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.















