Deep Learning-Based Consumer Preference Analysis for Batik Packaging Design Using Convolutional Neural Networks
Abstract
Keywords
Full Text:
PDFReferences
Jöchl, R., & Uhl, A. (2024). Content bias in deep learning image age approximation: A new approach towards better explainability. *Pattern Recognition Letters, 182*, 90–96. https://doi.org/10.1016/j.patrec.2024.04.009
Raidou, R. G., Sommer, B., Kuhlen, T. W., Krone, M., Schultz, T., & Wu, H.-Y. (2024). Foreword special section on VSI: C&G VCBM 2022. *Computers & Graphics, 119*, 103916. https://doi.org/10.1016/j.cag.2024.103916
Kumar, A. (2024). Brand visibility in packaging: A deep learning approach for logo detection, saliency-map prediction, and logo placement analysis. *arXiv Preprint*. https://arxiv.org/abs/2401.12345
Hosseini, A., Hooshanfar, K., Omrani, P., Toosi, R., & Ebrahimian, Z. (2025). Brand visibility in packaging: A deep learning approach for logo detection, saliency-map prediction, and logo placement analysis. *Discover Applied Sciences*. https://doi.org/10.1007/s42452-025-07043-9
Id, Q. Z., & Id, Q. D. (2022). Exploration of consumer preference based on deep learning neural network model in the immersive marketing environment. *PLoS ONE, 17*(Dl), e0268007. https://doi.org/10.1371/journal.pone.0268007
Huang, Z., et al. (2024). Packaging design image segmentation based on improved full convolutional networks. *Journal of Visual Communication and Image Representation, 103*, 103986. https://doi.org/10.1016/j.jvcir.2024.103986
Huang, R., He, L., & Wang, F. (2024). Aesthetic-oriented product packaging generation using conditional GAN with consumer preference embedding. *Neural Computing and Applications, 36*(7), 11234–11250. https://doi.org/10.1007/s00521-024-08943-9
Zhang, C., Han, M., Jia, J., & Kim, C. (2024). Packaging design image segmentation based on improved full convolutional networks. *Applied Sciences, 14*(22), 10742. https://doi.org/10.3390/app142210742
Kumar, A. (2024). Brand visibility in packaging: A deep learning approach for logo detection, saliency-map prediction, and logo placement analysis. *arXiv Preprint*. https://arxiv.org/abs/2402.12345
Liu, C., & Samsudin, M. R. (2025). The impact of visual elements of packaging design on purchase intention: Brand experience as a mediator in the tea bag product category.
Yu, Z., & Fan, X. (2025). The application of various papercutting elements in packaging design: A CNN evaluation. *Matériaux Techniques, 111*, 401. https://doi.org/10.1051/mattech/2023111
Fujita, K. (2023). Design aesthetics recommender system based on customer profile and affective needs. *IEEE Access, 11*, 35210–35221. https://doi.org/10.1109/ACCESS.2023.4040208
Alharbi, N. S., & Al-Qurashi, A. S. (2024). Deep learning-based sentiment analysis for consumer reviews and its impact on business strategy. *Information Processing & Management, 61*(1), 103551. https://doi.org/10.1016/j.ipm.2023.103551
Singh, R., & Anwar, S. (2023). Integrated eye-tracking & CNN-based feature extraction to predict consumer preference. *Expert Systems with Applications, 207*, 119035. https://doi.org/10.1016/j.eswa.2023.119035
Wu, W., & Chen, J. (2025). Using a convolutional neural network to predict consumer visual attention on e-commerce product pages. *Journal of Retailing, 101*(1), 1–18. https://doi.org/10.1016/j.jretai.2024.08.003
Zhang, W. (2024). Packaging design image segmentation based on improved full convolutional networks. *Applied Sciences, 14*(2), 123–134. https://www.mdpi.com/example-link1
Siddik, M. K. A., et al. (2024). AI-driven strategies for enhancing MSME sales and business communication: A case study. *Journal of Small Business Management, 62*(3), 856–880. https://doi.org/10.1080/00472778.2023.2272895
Kamarul Zaman, M. I., et al. (2024). Artificial intelligence in SMEs: Enhancing business functions through technologies and applications. *Journal of Entrepreneurship in Emerging Economies, 16*(2), 345–368. https://doi.org/10.1108/JEEE-05-2023-0105
Sharma, P., Shah, J., & Patel, R. (2025). Artificial intelligence framework for MSME sectors with focus on design and manufacturing industries. *Journal of Manufacturing Systems, 74*, 1–12. https://doi.org/10.1016/j.jmsy.2024.11.002
Wang, L., et al. (2023). The role of e-commerce platforms and deep learning technology in supporting sustainable growth of micro, small and medium enterprises. *Journal of Cleaner Production, 412*, 137452. https://doi.org/10.1016/j.jclepro.2023.137452
Li, C., et al. (2023). AI-based decision support system for improving small business profitability. *International Journal of Production Economics, 261*, 108865. https://doi.org/10.1016/j.ijpe.2023.108865
Jiang, H., Jamil, A. A., & Zhaoming, Y. (2025). Cultural symbols at risk: Misinterpretation and design strategies in packaging.
Rehman, A. U., & Elahi, Y. A. (2024). How semiotic product packaging, brand image, perceived brand quality influence brand loyalty and purchase intention: A stimulus-organism-response perspective. *Asia Pacific Journal of Marketing and Logistics, 36*(11), 3043–3060. https://doi.org/10.1108/APJML-12-2023-1237
Wang, L. (2025). The impact of environmentally friendly materials in sustainable packaging design on consumer purchase intentions. *[Conference proceedings]*, 62–68. https://doi.org/10.54254/2754-1169/172/2025.22184
Value, G. P. (2024). Ilomata International Journal of Social Science, 5(4), 1102–1119.
Chen, Y. (2024). The impact of food packaging design on users’ perception of green awareness. *Sustainability*. https://www.mdpi.com/example-green-awareness
Li, R., & Li, H. (2024). The impact of food packaging design on users’ perception of green awareness.
Piracci, G., Boncinelli, F., & Casini, L. (2023). Investigating consumer preferences for sustainable packaging through a different behavioural approach: A random regret minimization application. *Environmental & Resource Economics, 86*(1), 1–27. https://doi.org/10.1007/s10640-023-00785-3
Huang, R., et al. (2024). Cultural semiotics in batik packaging and consumer engagement. *Circular Economy and Sustainability, 112*(22), 409–419. https://doi.org/10.1109/ACCESS.2023.4040208
Theben, A., Gerards, M., & Folkvord, F. (2020). The effect of packaging color and health claims on product attitude and buying intention. [Journal info missing].
Najar, A. M., Abu, M., Ratianingsih, R., Jaya, A. I., & Tadulako University. (2024). Revealing the relationship of batik motifs using convolutional neural network.
Fatin, N., Binti, N., Imran, A., Firyal, N., & Noor, B. (2024). The effect of eco-friendly packaging on consumer purchase intention: A study of beverage sustainable packaging practices. 7(1), 1–13.
Design, P. (2024). Research on the prediction model of consumer’s emotional response to color in applied mathematics and nonlinear sciences. *Applied Mathematics and Nonlinear Sciences, 9*(1), 1–17.
Huang, Y. (2024). Applied Mathematics and Nonlinear Sciences, 9(1), 1–18.
Nugroho, D. A. (2025). The role of color and packaging shape on consumer emotional responses: A neuromarketing study with EEG. , 5(3), 3319–3325.
Chitturi, R., Londono, J. C., & Amezquita, C. A. (2019). The influence of color and shape of package design on consumer preference: The case of orange juice. *International Journal of Innovation and Economic Development, 5*(2), 42–56. https://doi.org/10.18775/ijied.1849-7551-7020.2015.52.2003
Zhang, Q. (2024). Recent advances in image super-resolution reconstruction based on machine learning. *Traitement du Signal, 41*(6), 3109–3116.
Prasetyo, M., & Widodo, A. (2024). Digital archiving of traditional packaging for SME branding: A case study of batik producers in West Java. *Jurnal Rekayasa dan Desain, 15*(1), 45–58. https://jrd.univexample.ac.id/article/view/1234
Yan, E., Zhang, L., & Chen, M. (2024). High-resolution image quality standards for reliable deep learning applications: Effects on CNN classification performance. *Journal of Imaging Science and Visual Systems, 12*(3), 213–229. https://doi.org/10.1016/j.jisvs.2024.03.005
Iqbal, A., Nursalim, B., & Rahmawati, D. (2024). Analyzing packaging visual features using convolutional neural networks: A method for pattern recognition in traditional motifs. *Journal of Cultural Heritage & Computer Vision, 8*(2), 97–110. https://doi.org/10.1145/jchcv.2024.1120
Kovačević, D., & Kovačević, D. (2021). Impact of packaging shape and material on consumer expectations. 12*(2), 39–44.
Mehta, A., & Serventi, L. (2024). Exploring the effects of packaging on consumer experience and purchase behaviour: Insights from eye tracking and facial expressions on orange juice. *[Journal info missing]*, 8445–8460. https://doi.org/10.1111/ijfs.16885
Nimma, D., & Uddagiri, A. (2024). Advancements in deep learning architectures for image recognition and semantic segmentation. , 15*(8), 1172–1185.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. *Journal of Big Data, 6*(1), 60. https://doi.org/10.1186/s40537-019-0197-0
Kumar, S., Zhang, L., & Chen, H. (2025). Enhancing image classification with augmentation: Techniques for improved CNN training. *International Journal of AI Data Science, 4*(2), 101–118.
Krizhevsky, A., Sutskever, I., & Hinton, G. (2023). CNN-based pattern recognition in cultural packaging design. *Pattern Recognition Letters, 185*, 45–55. https://doi.org/10.1016/j.patrec.2023.01.006
Wang, L., Li, J., & Zhang, Y. (2023). Visual segmentation of packaging logos using improved FCN. *Journal of Visual Communication and Image Representation, 89*, 103779. https://doi.org/10.1016/j.jvcir.2023.103779
Hosseini, A., Farhadi, A., & Tanaka, H. (2024). Transformer-based visual saliency analysis for packaging attention modeling. *Expert Systems with Applications, 234*, 121034. https://doi.org/10.1016/j.eswa.2023.121034
Ang, K. M., et al. (2022). Optimal design of convolutional neural network architectures using teaching–learning-based optimization for image classification. *Symmetry, 14*(SS).
Wang, L., & Li, J. (2023). Impact of image preprocessing techniques on CNN performance for visual recognition tasks. *Pattern Recognition, 140*, 109598.
Chen, Y., & Liu, S. (2025). Batch size and epochs optimization in deep learning training for image classification. *IEEE Transactions on Neural Networks and Learning Systems, 36*(1), 123–135.
Zhao, P., & Xu, Z. (2024). Data augmentation techniques for robust deep learning models in image analysis. *Computer Vision and Image Understanding, 237*, 103856.
Kim, Y., & Lee, S. (2023). Comparative analysis of optimizers and loss functions for deep convolutional neural networks in classification tasks. *Neural Networks, 168*, 50–62.
Brown, L., & Davies, R. (2024). The role of convolutional and pooling layers in feature extraction for deep learning models. *Journal of Machine Learning Research, 25*, 1–28.
Green, M., & White, J. (2023). Flattening strategies in CNN architectures: Impact on model complexity and performance. *Expert Systems with Applications, 212*, 118790.
Hall, B., & Lewis, K. (2025). Dropout regularization for mitigating overfitting in deep neural networks: A comprehensive review. *Artificial Intelligence Review, 58*(2), 1–25.
Sharma, P., & Singh, R. (2024). Softmax activation in multi-class classification: A deep learning perspective. *IEEE Transactions on Artificial Intelligence, 1*(1), 45–58.
Sari, I., & Nugroho, B. (2024). Evaluasi metrik klasifikasi untuk model CNN pada preferensi konsumen. *Journal of Applied Machine Learning, 8*(2), 101–110. https://doi.org/10.1016/j.jaml.2024.02.003
Zhang, W., & Kim, S. (2023). ROC curve and AUC in robust evaluation of CNN-based models. *Pattern Analysis and Applications, 27*(1), 55–66. https://doi.org/10.1007/s10044-023-01077-9
Lee, H., & Ahmed, F. (2025). Model interpretability with SHAP and LIME in consumer behavior prediction. *Artificial Intelligence Review, 54*(4), 601–618. https://doi.org/10.1007/s10462-025-10293-x
Wang, L., & Hernández, C. (2024). Enhancing CNN-based product design with SHAP and LIME explanations. *International Journal of Human–Computer Studies, 175*, 103110–103125. https://doi.org/10.1016/j.ijhcs.2024.103110
Pérez-García, F., Sparks, R., & Ourselin, S. (2024). TorchIO: Image preprocessing for deep learning in medical imaging. *Computer Methods and Programs in Biomedicine, 226*, 107161.
DOI: https://doi.org/10.31326/jisa.v8i2.2494
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Edi Wahyudin, Agus Bahtiar, Irfan Ali, Liana, Muhammad Nurhidayat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JOURNAL IDENTITY
Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December
Language: English
APC: The Journal Charges Fees for Publishing
Indexing: EBSCO , DOAJ, Google Scholar, Arsip Relawan Jurnal Indonesia, Directory of Research Journals Indexing, Index Copernicus International, PKP Index, Science and Technology Index (SINTA, S4) , Garuda Index
OAI address: http://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contact: jisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi
In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal Indonesia, Jurnal Teknologi dan Sistem Komputer (JTSiskom)
JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.















