Implementation of Data Mining on Tourist Visits Patterns on Lombok Island Tourism Objects

Sofiansyah Fadli, Saikin Saikin, Maulana Ashari

Abstract


Foreign tourists entering Indonesia in 2017 and 2018 have increased. From the data obtained on the website of the Ministry of Tourism (Kemenpar) the number of foreign tourists in 2017 was 14,039,799, while in 2018 there were 15,806.1, with a comparison of the number of tourists from the two years, the percentage increase in tourists was 12.58%. The data analysis approach using a classification model is a data analysis approach by studying the data and making predictions with the new data. in the classification model, there are many algorithms that can be applied in data analysis, one of which is the Decision Tree algorithm. This study aims to analyze the pattern of tourist visits based on the objects visited by the number of tourists visiting certain tourist objects. From the modeling using the Decesion Tree C4.5 Algorithm and the scenario of splitting the data into three parts, the highest accuracy value was obtained for splitting data of 80:20 for train and testing data and max depth 7, which obtained an accuracy of 94% for train data and 92% for data. testing. Modeling with the Boostrap Aggregating Method, the accuracy score obtained on training data is 93% and testing data is 92. percent. 3 accuracy results from using bagging reduce the accuracy of the C4.5 algorithm on the data training side from 94% to 93 percent, while the accuracy of testing data is still the same, namely 92%.

Keywords


C4.5 Algorithm; Data Mining; Decision Tree; Boostrap Aggregatting Method.

Full Text:

PDF

References


Larose, Daniel T, “Discovering Knowledge in Data : An Introduction to Data Mining”, John Willey & Sons, Inc. 2005.

Prasetyo, Eko, “Data Mining”, Yogyakarta: Andi Offset. 2014.

Listiya Surtiningsih, Muhammad Tanzil Furqon, Sigit Adinugroho, “Prediksi Jumlah Kunjungan Wisatawan Mancanegara Ke Bali Menggunakan Support Vector Regression dengan Algoritma Genetika” Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer, Vol 2 No 8, 2018.

Fredryc Joshua Pa'o, Hendry Hendry, “Decision Tree dalam Menganalisis Data Pengunjung Wisata Danau Poso untuk Pengambilan Keputusan”, Jurnal Sistem Komputer dan Informatika (JSON), Vol 2, No 3, 2021.

Ely Kurniawati, One Yantri, “Pemodelan Jumlah Kunjungan Wisatawan Mancanegara Di Batam Dengan Menggunakan Arima Dan Regresi Time Series”, Jurnal Dimensi, Vol 7, No 3,2018.

Mirah P Handayani, Putu Suciptawati, Trisna Darmayanti, Eka N Kencana, “Klasifikasi Desa/Kelurahan di Kabupaten Gianyar: Ekstraksi dan Klasifikasi Potensi Wisata”, Jurnal Master Pariwisata (JUMPA) Volume 07, Nomor 02, 2021.

Agnessia Mega Cahyani Andri Saputri, Devilia Sari, “Segmentasi Pasar Turisme Di Yogyakarta: Klasifikasi Gaya Hidup Wisatawan Domestik”, eProceedings of Management, Vol 6, No 2, 2019

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth, “From Data Mining to Knowledge Discovery in Databases”, AI Magazine Volume 17 Number 3. 1996

Liao, “Recent Advances in Data Mining of Enterprise Data: Algorithms and Application”, Singapore: World Scientific Publishing, 2007.

Yuli Mardi, “Data Mining: Klasifikasi Menggunakan Algoritma C4.5”, Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika, V2.i2 (213-219).

Ahmad Rofiqul Muslikh, Heru Agus Santoso, Aris Marjuni, “Klasifikasi Data Time Series Arus Lalu Lintas Jangka Pendek Menggunakan Algoritma Adaboost Dengan Random Forest”, Vol. 14, No. 1, 2018.

Sunjana, “Klasifikasi Data Nasabah Sebuah Asuransi Menggunakan Algoritma C4.5, Seminar Nasional Aplikasi Teknologi Informasi (SNATI)”, Yogyakarta, 2010.

Clancey, W.J, “Communication, Simulation, and Intelligent Agents: Implications of Personal Intelligent Machines for Medical Education”, In Proceedings of the Eighth International Joint Conference on Artificial Intelligence, 556-560. Menlo Park, Calif.: International Joint Conferences on Artificial Intelligence, 1983.

Leo Beiman, “Machine Learning, Statistics Department”, University of Californiaa. Berkeley, CA 94720, 1996.

Amin, N.A.S., Istadi, I, “Different Tools on Multiobjective Optimization of a Hybrid Artificial Neural Network – Genetic Algorithm for Plasma Chemical Reactor Modelling”, In Olympia Roeva (Editor) Real-World Applications of Genetic Algorithms. Croatia: InTech Publisher, 2012.

Saikin Saikin, Sofiansyah Fadli, Maulana Ashari, "Optimization of Support Vector Machine Method Using Feature Selection to Improve Classification Results," JISA (Jurnal Informatika dan Sains), Vol 4, No 1, 2021.




DOI: https://doi.org/10.31326/jisa.v5i1.1062

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Saikin Saikin, Sofiansyah Fadli, Maulana Ashari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: Indonesia & English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi, Yayasan Damandiri

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.