Sentiment Analysis of 2024 Presidential Candidates Election Using SVM Algorithm

Michael Alfonso, Dionisia Bhisetya Rarasati

Abstract


Elections for presidential candidates are held every 5 years with various candidates, especially on Twitter, arguments about political matters often occur that many Twitter users participate in discussions about the election for presidential candidate. Therefore, this study focuses on sentiment analysis to infer user responses to the presidential election and validate it by looking for a correlation between electability survey results and Twitter sentiment data using Pearson Correlation. In sentiment analysis model, the 10-Fold Cross Validation method is used to find the best model from a dataset with a division of training data and test data with 90:10 split. Then the alphabetic data will be converted into numeric data using the TF-IDF weighting method. To validate the best model, Confusion Matrix is used to get the best f1-score. The model is using Support vector machine algorithm with the Gaussian RBF (Radial Basis Function) kernel. The results of the analysis are compared with the results of the news portal electability survey which contains the 3 candidates using Pearson Correlation. This study produces the best fold for each data on each presidential candidate with the f1-score to find the best model for each fold. In the Peason Correlation result, the higher positive sentiment of each presidential candidate, the higher electability survey data. For further research, research can be discuss about hyper tuning parameters and using other kernels on Support vector machine algorithm.

Keywords


NLP; Pearson Correlation; Sentiment Analysis; SVM; TF-IDF

Full Text:

PDF

References


BPS, “Hasil Perhitungan Suara Sah Pemilu Presiden dan Wakil Presiden Menurut Provinsi Tahun 2004 , 2009 , 2014, 2019.” https://www.bps.go.id/statictable/2009/03/04/1574/hasil-perhitungan-suara-sah-pemilu-presiden-dan-wakil-presiden-menurut-provinsi-tahun-2004-2009-2014-2019.html (accessed Jul. 25, 2023).

B. W. Sari and F. F. Haranto, “IMPLEMENTASI SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP PELAYANAN TELKOM DAN BIZNET,” Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, Sep. 2019, doi: 10.33480/pilar.v15i2.699.

Fatihah Rahmadayana and Yuliant Sibaroni, “Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 936–942, Oct. 2021, doi: 10.29207/resti.v5i5.3457.

S. Fendyputra Pratama, R. Andrean, and A. Nugroho, “Analisis Sentimen Twitter Debat Calon Presiden Indonesia Menggunakan Metode Fined-Grained Sentiment Analysis,” JOINTECS (Journal of Information Technology and Computer Science), vol. 4, no. 2, pp. 2541–3619, 2019, doi: 10.31328/jo.

D. W. Seno and A. Wibowo, “Analisis Sentimen Data Twitter Tentang Pasangan Capres-Cawapres Pemilu 2019 Dengan Metode Lexicon Based Dan Support Vector Machine,” Jurnal Ilmiah FIFO, vol. 11, no. 2, p. 144, Nov. 2019, doi: 10.22441/fifo.2019.v11i2.004.

D. Darwis, E. Shintya Pratiwi, A. Ferico, and O. Pasaribu, “PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” 2020.

A. S. Arief, “SENTIMENTANALYSIS REVIEW APLIKASI MENGGUNAKAN ALGORITMA SVM PADA APLIKASI MYPERTAMINA,” 2023.

S. Diantika, W. Gata, H. Nalatissifa, and M. Lase, “Komparasi Algoritma SVM Dan Naive Bayes Untuk Klasifikasi Kestabilan Jaringan Listrik,” JURNAL ILMIAH ELEKTRONIKA DAN KOMPUTER, vol. 14, no. 1, pp. 10–15, 2021.

R. Risnantoyo, A. Nugroho, and K. Mandara, “Sentiment Analysis on Corona Virus Pandemic Using Machine Learning Algorithm,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 4, no. 1, pp. 86–96, Jul. 2020, doi: 10.31289/jite.v4i1.3798.

D. B. Rarasati and J. C. A. Putra, “Correlation Between Twitter Sentiment Analysis with Three Kernels Using Algorithm Support Vector Machine (SVM) Governor Candidate Electability Level,” COIESE, pp. 249–256, 2021.

F. Rahutomo, P. Y. Saputra, and M. A. Fidyawan, “IMPLEMENTASI TWITTER SENTIMENT ANALYSIS UNTUK REVIEW FILM MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” Jurnal Informatika Polinema, vol. 4, no. 2, pp. 93–100, 2018.

A. Hutapea and M. Tanzil Furqon, “Penerapan Algoritme Modified K-Nearest Neighbour Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3957–3961, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

F. Istighfarizkya, N. A. S. ER, I. M. Widiarthaa, L. G. Astutia, I. G. N. A. C. Putra, and I. K. G. Suhartana, “Klasifikasi Jurnal menggunakan Metode KNN dengan Mengimplementasikan Perbandingan Seleksi Fitur,” Jurnal Elektronik Ilmu Komputer Udayana, vol. 11, pp. 167–176, 2022, [Online]. Available: https://scholar.google.com

F. Satria, Zamhariri, and M. A. Syaripudin, “Prediksi Ketepatan Waktu Lulus Mahasiswa Menggunakan Algoritma C4.5 Pada Fakultas Dakwah Dan Ilmu Komunikasi UIN Raden Intan Lampung,” Jurnal Ilmiah MATRIK, vol. 22, pp. 28–35, 2020.

O. H. Anidjar, A. Barak, B. Ben-Moshe, E. Hagai, and S. Tuvyahu, “A Stethoscope for Drones: Transformers Based Methods for UAVs Acoustic Anomaly Detection,” IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3262702.




DOI: https://doi.org/10.31326/jisa.v6i2.1714

Refbacks



Copyright (c) 2023 Michael Alfonso, Dionisia Bhisetya Rarasati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.