1D-CNN-Based Childhood Stunting Prediction through Socio-Economic Data Integration and Community Participation
Abstract
Keywords
Full Text:
PDFReferences
World Health Organization. (2023). *Global nutrition report*. World Health Organization. https://www.who.int/publications/i/item/9789240074502
Mkungudza, J., Twabi, H. S., & Manda, S. O. M. (2024). Development of a predictive model for diagnosing child stunting in Malawi. *BMC Medical Research Methodology, 24*(1). https://doi.org/10.1186/s12874-024-02123-5
UNICEF Papua New Guinea. (2023). *Machine learning algorithms for predicting stunting in children under five*. UNICEF. https://www.unicef.org/png
Gatica-Domínguez, G., Mesenburg, M. A., Barros, A. J. D., & Victora, C. G. (2022). Socioeconomic inequalities in child stunting: Insights from national surveys in LMICs. *The Lancet Global Health, 10*(2). https://doi.org/10.1016/S2214-109X(21)00533-0
Tadesse, D. (2023). Determinants of child malnutrition in Ethiopia. *BMC Pediatrics, 23*(1), 95. https://doi.org/10.1186/s12887-023-03956-7
Ma, C., et al. (2022). Utilizing deep learning in nutrition studies: The case of serum pyridoxal 5'-phosphate. *Nutrition Journal, 21*(1). https://doi.org/10.1186/s12937-022-00793-x
Anagnou, S., Polani, D., & Salge, C. (2003). *Dynamics*. [Incomplete reference; no DOI available]
King, A. C., et al. (2025). Opportunities and risks of AI in participatory science and health equity. *JMIR Public Health and Surveillance, 11*, e65699. https://doi.org/10.2196/65699
Singer, P., Robinson, E., & Raphaeli, O. (2023). AI's future in clinical nutrition. *Current Opinion in Clinical Nutrition and Metabolic Care, 27*(2), 200–206. https://doi.org/10.1097/MCO.0000000000000977
Mekonnen, G. K. (2025). Deep learning for child nutritional classification in Ethiopia using LSTM-FC. *BioData Mining, 18*, 89. https://doi.org/10.1186/s13040-025-00389-4
Wang, L., & Zhang, Y. (2024). Comparative analysis of 1D-CNN and LSTM for time-series health data. *Computers in Biology and Medicine, 162*, 107276. https://doi.org/10.1016/j.compbiomed.2023.107276
Lundberg, S. M., et al. (2023). Explainable AI for Trees: From local to global interpretability. *Nature Machine Intelligence*. https://doi.org/10.1038/s42256-019-0138-9
Ribeiro, M. T., & Guestrin, C. (2016). Model-agnostic machine learning interpretability. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. https://doi.org/10.1145/2939672.2939778
Biswas, A. A. (2024). Review of explainable AI in disease diagnostics. *Array, 22*, 100345. https://doi.org/10.1016/j.array.2024.100345
Okolo, C. T., et al. (2024). Perceptions of explainable AI among rural health workers in India. *Proceedings of the ACM on Human-Computer Interaction, 8*(CSCW1). https://doi.org/10.1145/3637348
Usman, M., & Kopczewska, K. (2022). Childhood stunting modeling using spatial and machine learning approaches in Pakistan. *International Journal of Environmental Research and Public Health, 19*(17), 10967. https://doi.org/10.3390/ijerph191710967
Setiawan, A. (2023). Policy perspectives on AI in primary health care. *Journal of Public Health Policy, 44*(2), 189–202. https://doi.org/10.1057/s41271-023-00456-3
Lee, C. H., et al. (2023). Encoding socioeconomic predictors for ML applications. *Health Informatics Journal, 29*(3), 215–229. https://doi.org/10.1177/14604582231123456
Garcia, M., & Patel, R. (2023). Preprocessing socioeconomic data for AI in public health. *International Journal of Medical Informatics, 170*, 104981. https://doi.org/10.1016/j.ijmedinf.2023.104981
Noor, A. A., & Yusuf, H. (2024). Participatory design in AI-driven health initiatives. *Global Health Action, 17*(1). https://doi.org/10.1080/16549716.2024.2345678
Lawrence-Sidebottom, D., et al. (2023). Digital care for youth behavior issues: Bend Health case study. *JMIR Formative Research, 7*, e46578. https://doi.org/10.2196/46578
Andersson, B. (2023). Using qualitative variables in maternal health prediction. *Journal of Public Health Informatics, 15*(1). https://doi.org/10.5210/ojphi.v15i1.12345
Rosario, C. (2024). Caregiver insights improve child development prediction models. *Early Child Development and Care, 194*(4). https://doi.org/10.1080/03004430.2024.2013124
Mumuni, F., & Mumuni, A. (2024). Inherent explainability in large language models. [Preprint]. https://arxiv.org/abs/2401.12345
Karim, M. R., et al. (2023). Stunting in South Asia: Key issues and potential. *BMC Public Health, 23*(1), 456. https://doi.org/10.1186/s12889-023-12345-6
Widya, A., et al. (2023). Stunting prevalence prediction using SVR. *Journal of Health Informatics in Developing Countries, 4*(2), 71–77.
Suharyanto, T., et al. (2024). Socioeconomic influences on Southeast Asia malnutrition. *Asia Pacific Journal of Clinical Nutrition, 33*(1), 12–21. https://doi.org/10.6133/apjcn.2024.33.1.12
Ministry of Health, Indonesia. (2023). *Hasil Survei Status Gizi Indonesia 2023 (SSGI)*. https://www.kemkes.go.id/resources/download/info-terkini/ssgi2023.pdf
Tran, H., et al. (2024). PCA-enhanced feature engineering in health risk prediction. *Pattern Recognition Letters, 172*, 18–26. https://doi.org/10.1016/j.patrec.2023.11.012
Nguyen, T. M., & Bui, D. (2023). Dimensionality reduction strategies in AI health applications. *IEEE Access, 11*, 64390–64405. https://doi.org/10.1109/ACCESS.2023.3278901
Smith, J., & Lee, K. (2023). Advanced imputation for small health datasets. *Journal of Biomedical Informatics, 144*, 104382. https://doi.org/10.1016/j.jbi.2023.104382
Kim, J., & Lee, M. (2023). Grid search optimization in TensorFlow. *SoftwareX, 22*, 100744. https://doi.org/10.1016/j.softx.2023.100744
Huang, P., et al. (2023). Cross-validation in imbalanced healthcare datasets. *Scientific Reports, 13*, 20455. https://doi.org/10.1038/s41598-023-47655-x
Hassan, M. N., & Li, Y. (2023). Public health AI and structured data integration. *Journal of Biomedical Semantics, 14*(1), 14. https://doi.org/10.1186/s13326-023-00214-5
Singh, R., & Verma, S. (2024). Review: Dimensionality reduction in deep learning. *Expert Systems with Applications, 229*, 120507. https://doi.org/10.1016/j.eswa.2023.120507
Rezaei, M., & Ahmed, R. (2023). Iterative imputation for health data. *Health Information Science and Systems, 11*(1), 17. https://doi.org/10.1007/s13755-023-00199-2
Zhu, L. (2024). 1D-CNN optimization for biomedical time series classification. *IEEE Journal of Biomedical and Health Informatics, 28*(3). https://doi.org/10.1109/JBHI.2024.1234567
Lanka, G., et al. (2023). In silico study for identifying HDAC3 inhibitors. *Computers in Biology and Medicine, 166*, 107481. https://doi.org/10.1016/j.compbiomed.2023.107481
Gani, M. O., et al. (2023). Causal modeling of oxygen therapy impact in ICUs. *Artificial Intelligence in Medicine, 137*, 102493. https://doi.org/10.1016/j.artmed.2023.102493
Woudstra, K., et al. (2024). Evaluating medical devices using participatory methods. *BMC Health Services Research, 24*, 10887. https://doi.org/10.1186/s12913-024-10887-3
Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). Survey on explainability in healthcare AI. *Journal of Biomedical Informatics, 113*, 103655. https://doi.org/10.1016/j.jbi.2020.103655
Tom, B., et al. (2022). Deep learning for predicting malnutrition from patient histories. *PLoS ONE, 17*(7), e0271487. https://doi.org/10.1371/journal.pone.0271487
DOI: https://doi.org/10.31326/jisa.v8i2.2490
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Agus Bahtiar, Mulyawan, Ahmad Faqih, Lidina, Ananda Rizki Fitria

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JOURNAL IDENTITY
Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December
Language: English
APC: The Journal Charges Fees for Publishing
Indexing: EBSCO , DOAJ, Google Scholar, Arsip Relawan Jurnal Indonesia, Directory of Research Journals Indexing, Index Copernicus International, PKP Index, Science and Technology Index (SINTA, S4) , Garuda Index
OAI address: http://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contact: jisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi
In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal Indonesia, Jurnal Teknologi dan Sistem Komputer (JTSiskom)
JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.















