1D-CNN-Based Childhood Stunting Prediction through Socio-Economic Data Integration and Community Participation

Agus Bahtiar, Mulyawan Mulyawan, Ahmad Faqih, Lidina Lidina, Ananda Rizki Fitria

Abstract


Stunting remains a significant global public health challenge, affecting approximately 148 million children under the age of five. This condition leads to long-term cognitive and physical deficits, particularly in low- and middle-income countries. Many existing prediction models fail to capture the complex interdependencies between nutritional, socio-economic, and environmental factors. To address this gap, our study introduces a 1D-Convolutional Neural Network (1D-CNN) model designed to predict childhood stunting using structured datasets collected from community health centers (Puskesmas) and validated by the Cirebon City Health Department (Dinas Kesehatan Kota Cirebon), Indonesia. The dataset includes anonymized records of children under five years old, comprising anthropometric measurements, socio-economic profiles, nutritional intake, and environmental indicators, gathered through household surveys and routine public health reporting. The proposed 1D-CNN architecture is optimized for structured data by integrating convolutional and pooling layers, dropout regularization, and dense classification layers. To enhance interpretability, we employ explainable AI (XAI) methods—SHAP and LIME—to reveal the relative influence of each feature in the model’s decision-making process. Additionally, the study applies a participatory validation approach through focus group discussions (FGDs) with community health workers, ensuring contextual relevance and ethical integrity. Experimental results demonstrate the superior performance of the proposed model, achieving 93.12% accuracy, with a precision of 97% and a recall of 89%, resulting in an F1-score of 93% across both stunted and non-stunted classes. These findings outperform traditional machine learning approaches and highlight the potential of AI-driven predictive frameworks for early stunting detection and policy-oriented health interventions. This research contributes to the advancement of data-driven public health strategies by integrating predictive analytics, community participation, and transparent AI methodologies

Keywords


1D-CNN; stunting prediction; community participation; socio-economic data; explainable AI; early intervention

Full Text:

PDF

References


World Health Organization. (2023). *Global nutrition report*. World Health Organization. https://www.who.int/publications/i/item/9789240074502

Mkungudza, J., Twabi, H. S., & Manda, S. O. M. (2024). Development of a predictive model for diagnosing child stunting in Malawi. *BMC Medical Research Methodology, 24*(1). https://doi.org/10.1186/s12874-024-02123-5

UNICEF Papua New Guinea. (2023). *Machine learning algorithms for predicting stunting in children under five*. UNICEF. https://www.unicef.org/png

Gatica-Domínguez, G., Mesenburg, M. A., Barros, A. J. D., & Victora, C. G. (2022). Socioeconomic inequalities in child stunting: Insights from national surveys in LMICs. *The Lancet Global Health, 10*(2). https://doi.org/10.1016/S2214-109X(21)00533-0

Tadesse, D. (2023). Determinants of child malnutrition in Ethiopia. *BMC Pediatrics, 23*(1), 95. https://doi.org/10.1186/s12887-023-03956-7

Ma, C., et al. (2022). Utilizing deep learning in nutrition studies: The case of serum pyridoxal 5'-phosphate. *Nutrition Journal, 21*(1). https://doi.org/10.1186/s12937-022-00793-x

Anagnou, S., Polani, D., & Salge, C. (2003). *Dynamics*. [Incomplete reference; no DOI available]

King, A. C., et al. (2025). Opportunities and risks of AI in participatory science and health equity. *JMIR Public Health and Surveillance, 11*, e65699. https://doi.org/10.2196/65699

Singer, P., Robinson, E., & Raphaeli, O. (2023). AI's future in clinical nutrition. *Current Opinion in Clinical Nutrition and Metabolic Care, 27*(2), 200–206. https://doi.org/10.1097/MCO.0000000000000977

Mekonnen, G. K. (2025). Deep learning for child nutritional classification in Ethiopia using LSTM-FC. *BioData Mining, 18*, 89. https://doi.org/10.1186/s13040-025-00389-4

Wang, L., & Zhang, Y. (2024). Comparative analysis of 1D-CNN and LSTM for time-series health data. *Computers in Biology and Medicine, 162*, 107276. https://doi.org/10.1016/j.compbiomed.2023.107276

Lundberg, S. M., et al. (2023). Explainable AI for Trees: From local to global interpretability. *Nature Machine Intelligence*. https://doi.org/10.1038/s42256-019-0138-9

Ribeiro, M. T., & Guestrin, C. (2016). Model-agnostic machine learning interpretability. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. https://doi.org/10.1145/2939672.2939778

Biswas, A. A. (2024). Review of explainable AI in disease diagnostics. *Array, 22*, 100345. https://doi.org/10.1016/j.array.2024.100345

Okolo, C. T., et al. (2024). Perceptions of explainable AI among rural health workers in India. *Proceedings of the ACM on Human-Computer Interaction, 8*(CSCW1). https://doi.org/10.1145/3637348

Usman, M., & Kopczewska, K. (2022). Childhood stunting modeling using spatial and machine learning approaches in Pakistan. *International Journal of Environmental Research and Public Health, 19*(17), 10967. https://doi.org/10.3390/ijerph191710967

Setiawan, A. (2023). Policy perspectives on AI in primary health care. *Journal of Public Health Policy, 44*(2), 189–202. https://doi.org/10.1057/s41271-023-00456-3

Lee, C. H., et al. (2023). Encoding socioeconomic predictors for ML applications. *Health Informatics Journal, 29*(3), 215–229. https://doi.org/10.1177/14604582231123456

Garcia, M., & Patel, R. (2023). Preprocessing socioeconomic data for AI in public health. *International Journal of Medical Informatics, 170*, 104981. https://doi.org/10.1016/j.ijmedinf.2023.104981

Noor, A. A., & Yusuf, H. (2024). Participatory design in AI-driven health initiatives. *Global Health Action, 17*(1). https://doi.org/10.1080/16549716.2024.2345678

Lawrence-Sidebottom, D., et al. (2023). Digital care for youth behavior issues: Bend Health case study. *JMIR Formative Research, 7*, e46578. https://doi.org/10.2196/46578

Andersson, B. (2023). Using qualitative variables in maternal health prediction. *Journal of Public Health Informatics, 15*(1). https://doi.org/10.5210/ojphi.v15i1.12345

Rosario, C. (2024). Caregiver insights improve child development prediction models. *Early Child Development and Care, 194*(4). https://doi.org/10.1080/03004430.2024.2013124

Mumuni, F., & Mumuni, A. (2024). Inherent explainability in large language models. [Preprint]. https://arxiv.org/abs/2401.12345

Karim, M. R., et al. (2023). Stunting in South Asia: Key issues and potential. *BMC Public Health, 23*(1), 456. https://doi.org/10.1186/s12889-023-12345-6

Widya, A., et al. (2023). Stunting prevalence prediction using SVR. *Journal of Health Informatics in Developing Countries, 4*(2), 71–77.

Suharyanto, T., et al. (2024). Socioeconomic influences on Southeast Asia malnutrition. *Asia Pacific Journal of Clinical Nutrition, 33*(1), 12–21. https://doi.org/10.6133/apjcn.2024.33.1.12

Ministry of Health, Indonesia. (2023). *Hasil Survei Status Gizi Indonesia 2023 (SSGI)*. https://www.kemkes.go.id/resources/download/info-terkini/ssgi2023.pdf

Tran, H., et al. (2024). PCA-enhanced feature engineering in health risk prediction. *Pattern Recognition Letters, 172*, 18–26. https://doi.org/10.1016/j.patrec.2023.11.012

Nguyen, T. M., & Bui, D. (2023). Dimensionality reduction strategies in AI health applications. *IEEE Access, 11*, 64390–64405. https://doi.org/10.1109/ACCESS.2023.3278901

Smith, J., & Lee, K. (2023). Advanced imputation for small health datasets. *Journal of Biomedical Informatics, 144*, 104382. https://doi.org/10.1016/j.jbi.2023.104382

Kim, J., & Lee, M. (2023). Grid search optimization in TensorFlow. *SoftwareX, 22*, 100744. https://doi.org/10.1016/j.softx.2023.100744

Huang, P., et al. (2023). Cross-validation in imbalanced healthcare datasets. *Scientific Reports, 13*, 20455. https://doi.org/10.1038/s41598-023-47655-x

Hassan, M. N., & Li, Y. (2023). Public health AI and structured data integration. *Journal of Biomedical Semantics, 14*(1), 14. https://doi.org/10.1186/s13326-023-00214-5

Singh, R., & Verma, S. (2024). Review: Dimensionality reduction in deep learning. *Expert Systems with Applications, 229*, 120507. https://doi.org/10.1016/j.eswa.2023.120507

Rezaei, M., & Ahmed, R. (2023). Iterative imputation for health data. *Health Information Science and Systems, 11*(1), 17. https://doi.org/10.1007/s13755-023-00199-2

Zhu, L. (2024). 1D-CNN optimization for biomedical time series classification. *IEEE Journal of Biomedical and Health Informatics, 28*(3). https://doi.org/10.1109/JBHI.2024.1234567

Lanka, G., et al. (2023). In silico study for identifying HDAC3 inhibitors. *Computers in Biology and Medicine, 166*, 107481. https://doi.org/10.1016/j.compbiomed.2023.107481

Gani, M. O., et al. (2023). Causal modeling of oxygen therapy impact in ICUs. *Artificial Intelligence in Medicine, 137*, 102493. https://doi.org/10.1016/j.artmed.2023.102493

Woudstra, K., et al. (2024). Evaluating medical devices using participatory methods. *BMC Health Services Research, 24*, 10887. https://doi.org/10.1186/s12913-024-10887-3

Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). Survey on explainability in healthcare AI. *Journal of Biomedical Informatics, 113*, 103655. https://doi.org/10.1016/j.jbi.2020.103655

Tom, B., et al. (2022). Deep learning for predicting malnutrition from patient histories. *PLoS ONE, 17*(7), e0271487. https://doi.org/10.1371/journal.pone.0271487




DOI: https://doi.org/10.31326/jisa.v8i2.2490

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Agus Bahtiar, Mulyawan, Ahmad Faqih, Lidina, Ananda Rizki Fitria

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


JOURNAL IDENTITY

Journal Name: JISA (Jurnal Informatika dan Sains)
e-ISSN: 2614-8404, p-ISSN: 2776-3234
Publisher: Program Studi Teknik Informatika Universitas Trilogi
Publication Schedule: June and December 
Language: English
APC: The Journal Charges Fees for Publishing 
IndexingEBSCODOAJGoogle ScholarArsip Relawan Jurnal IndonesiaDirectory of Research Journals Indexing, Index Copernicus International, PKP IndexScience and Technology Index (SINTA, S4) , Garuda Index
OAI addresshttp://trilogi.ac.id/journal/ks/index.php/JISA/oai
Contactjisa@trilogi.ac.id
Sponsored by: DOI – Digital Object Identifier Crossref, Universitas Trilogi

In Collaboration With: Indonesian Artificial Intelligent Ecosystem(IAIE), Relawan Jurnal IndonesiaJurnal Teknologi dan Sistem Komputer (JTSiskom)

 

 


JISA (Jurnal Informatika dan Sains) is Published by Program Studi Teknik Informatika, Universitas Trilogi under Creative Commons Attribution-ShareAlike 4.0 International License.